Finite Element Approximation for the Fractional Eigenvalue Problem

被引:22
|
作者
Pablo Borthagaray, Juan [1 ,2 ]
Del Pezzo, Leandro M. [3 ,4 ]
Martinez, Sandra [1 ,2 ]
机构
[1] Univ Buenos Aires, CONICET, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Ave Figueroa Alcorta 7350,C1428BCW, Buenos Aires, DF, Argentina
[4] Univ Torcuato Tella, Dept Matemat & Estadist, Ave Figueroa Alcorta 7350,C1428BCW, Buenos Aires, DF, Argentina
关键词
Fractional Laplacian; Eigenvalue problem; Finite element method; BREZIS-NIRENBERG RESULT; REGULARITY; EQUATION; DISPERSION; LAPLACIAN; STATES;
D O I
10.1007/s10915-018-0710-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study a finite element method for finding solutions to the eigenvalue problem for the fractional Laplacian. We prove that the discrete eigenvalue problem converges to the continuous one and we show the order of such convergence. Finally, we perform some numerical experiments and compare our results with previous work by other authors.
引用
收藏
页码:308 / 329
页数:22
相关论文
共 50 条
  • [1] Finite Element Approximation for the Fractional Eigenvalue Problem
    Juan Pablo Borthagaray
    Leandro M. Del Pezzo
    Sandra Martínez
    Journal of Scientific Computing, 2018, 77 : 308 - 329
  • [2] Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem
    Solov’ev S.I.
    Solov’ev P.S.
    Lobachevskii Journal of Mathematics, 2018, 39 (7) : 949 - 956
  • [3] Finite Element Approximation of a Contact Vector Eigenvalue Problem
    Hennie De Schepper
    Roger Van Keer
    Applications of Mathematics, 2003, 48 (6) : 559 - 571
  • [4] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Xie, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    APPLICATIONS OF MATHEMATICS, 2009, 54 (01) : 1 - 15
  • [5] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Shanghui Jia
    Hehu Xie
    Xiaobo Yin
    Shaoqin Gao
    Applications of Mathematics, 2009, 54 : 1 - 15
  • [6] Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Me, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 435 - 448
  • [7] Isoparametric finite-element approximation of a Steklov eigenvalue problem
    Andreev, AB
    Todorov, TD
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) : 309 - 322
  • [8] Finite element approximation to the extremal eigenvalue problem for inhomogenous materials
    Liang, Kewei
    Lu, Xiliang
    Yang, Jerry Zhijian
    NUMERISCHE MATHEMATIK, 2015, 130 (04) : 741 - 762
  • [9] Finite element approximation to the extremal eigenvalue problem for inhomogenous materials
    Kewei Liang
    Xiliang Lu
    Jerry Zhijian Yang
    Numerische Mathematik, 2015, 130 : 741 - 762
  • [10] FINITE ELEMENT APPROXIMATION OF THE PARABOLIC FRACTIONAL OBSTACLE PROBLEM
    Otarola, Enrique
    Salgado, Abner J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2619 - 2639