Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules

被引:262
|
作者
Yurchenko, Sergei N. [1 ]
Thiel, Walter
Jensen, Per
机构
[1] Tech Univ Dresden, Inst Phys Chem & Elekt, D-01062 Dresden, Germany
[2] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[3] Berg Univ Wuppertal, FBC Math & Naturwissensch, Fachgrp Chem, D-42097 Wuppertal, Germany
关键词
theoretical rovibrational energies; polyatomic molecules;
D O I
10.1016/j.jms.2007.07.009
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We present a new computational method with associated computer program TROVE (Theoretical ROVibrational Energies) to perform variational calculations of rovibrational energies for general polyatomic molecules of arbitrary structure in isolated electronic states. The (approximate) nuclear kinetic energy operator is represented as an expansion in terms of internal coordinates. The main feature of the computational scheme is a numerical construction of the kinetic energy operator, which is an integral part of the computation process. Thus the scheme is self-contained, i.e., it requires no analytical pre-derivation of the kinetic energy operator. It is also general, since it can be used in connection with any internal coordinates. The method represents an extension of our model for pyramidal XY3 molecules reported previously [S.N. Yurchenko, M. Carvajal, P. Jensen, H. Lin, J.J. Zheng, W. Thiel, Mol. Phys. 103 (2005) 359]. Non-rigid molecules are treated in the Hougen-Bunker-Johns approach [J.T. Hougen, P.R. Bunker, J.W.C. Johns, J. Mol. Spectrosc. 34 (1970) 136]. In this case, the variational calculations employ a numerical finite basis representation for the large-amplitude motion using basis functions that are generated by Numerov-Cooley integration of the appropriate one-dimensional Schrodinger equation. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 50 条
  • [41] Rovibrational energies, partition functions and equilibrium fractionation of the CO2 isotopologues
    Cerezo, J.
    Bastida, A.
    Requena, A.
    Zuniga, J.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 147 : 233 - 251
  • [42] An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion
    Yu, Hua-Gen
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (08):
  • [43] Theoretical calculation of bond dissociation energies and enthalpies of formation for halogenated molecules
    Lazarou, YG
    Prosmitis, AV
    Papadimitriou, VC
    Papagiannakopoulos, P
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (27): : 6729 - 6742
  • [44] BOND DISSOCIATION ENERGIES IN POLYATOMIC MOLECULES OF THE TYPE MXN
    SKINNER, HA
    TRANSACTIONS OF THE FARADAY SOCIETY, 1949, 45 (01): : 20 - 33
  • [45] BINDING ENERGIES OF POLYATOMIC 4HE-MOLECULES
    SCHMID, EW
    SCHWAGER, J
    TANG, YC
    HERNDON, RC
    PHYSICA, 1965, 31 (07): : 1143 - &
  • [46] Accurate studies on rovibrational energies of the electronic state B1Σ of HF molecule using an algebraic approach
    Fan Qun-Chao
    Sun Wei-Guo
    Qu Shuang-Shuang
    ACTA PHYSICA SINICA, 2008, 57 (07) : 4110 - 4118
  • [47] Calculation of adsorption energies of molecules in cages: a density functional approach
    Langenaeker, W
    De Proft, F
    Tielens, F
    Geerlings, P
    CHEMICAL PHYSICS LETTERS, 1998, 288 (5-6) : 628 - 634
  • [48] Rovibrational Energies of 13C16O2 Determined with Kilohertz Accuracy
    Zhang, Zi-Tan
    Cao, Fang-Hui
    Jiang, Shan
    Liu, An-Wen
    Tan, Yan
    Sun, Y. R.
    Hu, Shui-Ming
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (12): : 2366 - 2375
  • [49] Ab initio potential energy surface and rovibrational energies of H2F+
    Gutle, C.
    Coudert, L. H.
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2012, 273 : 44 - 49
  • [50] Accurate numerical computation of rovibrational G matrices in molecules of arbitrary size
    Castro, Maria Eugenia
    Nino, Alfonso
    Munoz-Caro, Camelia
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2008, PT 1, PROCEEDINGS, 2008, 5072 : 1011 - 1025