Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules

被引:262
|
作者
Yurchenko, Sergei N. [1 ]
Thiel, Walter
Jensen, Per
机构
[1] Tech Univ Dresden, Inst Phys Chem & Elekt, D-01062 Dresden, Germany
[2] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[3] Berg Univ Wuppertal, FBC Math & Naturwissensch, Fachgrp Chem, D-42097 Wuppertal, Germany
关键词
theoretical rovibrational energies; polyatomic molecules;
D O I
10.1016/j.jms.2007.07.009
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We present a new computational method with associated computer program TROVE (Theoretical ROVibrational Energies) to perform variational calculations of rovibrational energies for general polyatomic molecules of arbitrary structure in isolated electronic states. The (approximate) nuclear kinetic energy operator is represented as an expansion in terms of internal coordinates. The main feature of the computational scheme is a numerical construction of the kinetic energy operator, which is an integral part of the computation process. Thus the scheme is self-contained, i.e., it requires no analytical pre-derivation of the kinetic energy operator. It is also general, since it can be used in connection with any internal coordinates. The method represents an extension of our model for pyramidal XY3 molecules reported previously [S.N. Yurchenko, M. Carvajal, P. Jensen, H. Lin, J.J. Zheng, W. Thiel, Mol. Phys. 103 (2005) 359]. Non-rigid molecules are treated in the Hougen-Bunker-Johns approach [J.T. Hougen, P.R. Bunker, J.W.C. Johns, J. Mol. Spectrosc. 34 (1970) 136]. In this case, the variational calculations employ a numerical finite basis representation for the large-amplitude motion using basis functions that are generated by Numerov-Cooley integration of the appropriate one-dimensional Schrodinger equation. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 50 条
  • [31] Transfer of rovibrational energies in hydrogen plasma-carbon surface interactions
    Krstic, P. S.
    Hollmann, E. M.
    Reinhold, C. O.
    Stuart, S. J.
    Doerner, R. P.
    Nishijima, D.
    Pigarov, A. Yu.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 88 - 91
  • [32] New rovibrational kinetic energy operators using polyspherical coordinates for polyatomic molecules
    Schwenke, DW
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (23): : 10431 - 10438
  • [33] The vibration-rotation energies of polyatomic molecules
    Nielsen, HH
    PHYSICAL REVIEW, 1941, 60 (11): : 794 - 810
  • [34] Theoretical study with rovibrational and dipole moment calculation of the LaO molecule
    Korek, M.
    El-Kork, Nayla
    Moussa, A. N.
    Bentiba, A.
    CHEMICAL PHYSICS LETTERS, 2013, 575 : 115 - 121
  • [35] Rovibrational energies and spectroscopic constants for H2O-Ng complexes
    da Cunha, Wiliam F.
    de Oliveira, Rhuiago Mendes
    Roncaratti, Luiz F.
    Martins, Joao B. L.
    Silva, Geraldo M. E.
    Gargano, Ricardo
    JOURNAL OF MOLECULAR MODELING, 2014, 20 (12)
  • [36] Potential curves and rovibrational energies for electronic states of the molecular ion KCs+
    Korek, M
    Allouche, AR
    Al, SNA
    CANADIAN JOURNAL OF PHYSICS, 2002, 80 (09) : 1025 - 1035
  • [37] Rovibrational energies and spectroscopic constants for H2O−Ng complexes
    Wiliam F. da Cunha
    Rhuiago Mendes de Oliveira
    Luiz F. Roncaratti
    João B. L. Martins
    Geraldo M. e Silva
    Ricardo Gargano
    Journal of Molecular Modeling, 2014, 20
  • [38] EFFECTIVE HAMILTONIAN FOR ROVIBRATIONAL ENERGIES AND LINE-INTENSITIES OF CARBON-DIOXIDE
    TEFFO, JL
    SULAKSHINA, ON
    PEREVALOV, VI
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1992, 156 (01) : 48 - 64
  • [39] PERTURBATION CALCULATION OF CORRELATION ENERGIES FOR POLYATOMIC-MOLECULES .1. INITIAL RESULTS
    OSTLUND, NS
    BOWEN, MF
    THEORETICA CHIMICA ACTA, 1975, 40 (02): : 175 - 188
  • [40] Rovibrational energy levels of H3+ with energies above the barrier to linearity
    Bachorz, Rafal A.
    Cencek, Wojciech
    Jaquet, Ralph
    Komasa, Jacek
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (02):