Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules

被引:262
|
作者
Yurchenko, Sergei N. [1 ]
Thiel, Walter
Jensen, Per
机构
[1] Tech Univ Dresden, Inst Phys Chem & Elekt, D-01062 Dresden, Germany
[2] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[3] Berg Univ Wuppertal, FBC Math & Naturwissensch, Fachgrp Chem, D-42097 Wuppertal, Germany
关键词
theoretical rovibrational energies; polyatomic molecules;
D O I
10.1016/j.jms.2007.07.009
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We present a new computational method with associated computer program TROVE (Theoretical ROVibrational Energies) to perform variational calculations of rovibrational energies for general polyatomic molecules of arbitrary structure in isolated electronic states. The (approximate) nuclear kinetic energy operator is represented as an expansion in terms of internal coordinates. The main feature of the computational scheme is a numerical construction of the kinetic energy operator, which is an integral part of the computation process. Thus the scheme is self-contained, i.e., it requires no analytical pre-derivation of the kinetic energy operator. It is also general, since it can be used in connection with any internal coordinates. The method represents an extension of our model for pyramidal XY3 molecules reported previously [S.N. Yurchenko, M. Carvajal, P. Jensen, H. Lin, J.J. Zheng, W. Thiel, Mol. Phys. 103 (2005) 359]. Non-rigid molecules are treated in the Hougen-Bunker-Johns approach [J.T. Hougen, P.R. Bunker, J.W.C. Johns, J. Mol. Spectrosc. 34 (1970) 136]. In this case, the variational calculations employ a numerical finite basis representation for the large-amplitude motion using basis functions that are generated by Numerov-Cooley integration of the appropriate one-dimensional Schrodinger equation. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 50 条
  • [11] Variational calculations of rovibrational energies for CO2
    Zúñiga, J
    Bastida, A
    Alacid, M
    Requena, A
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2001, 205 (01) : 62 - 72
  • [12] Studies on rovibrational energies in the ground state of nitrogen molecule using an algebraic approach
    Fan, Q.
    Sun, W.
    Li, H.
    Feng, H.
    INDIAN JOURNAL OF PHYSICS, 2012, 86 (04) : 237 - 243
  • [13] Theoretical determination of rovibrational energies and anomalous isotopic effect of weakly bound cluster HXeOH
    Yu, HG
    Muckerman, JT
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2003, 2 (04): : 573 - 581
  • [14] Studies on rovibrational energies in the ground state of nitrogen molecule using an algebraic approach
    Qunchao Fan
    Weiguo Sun
    Huidong Li
    Hao Feng
    Indian Journal of Physics, 2012, 86 : 237 - 243
  • [15] The MIRS computer package for modeling the rovibrational spectra of polyatomic molecules
    Nikitin, A
    Champion, JP
    Tyuterev, VG
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 82 (1-4): : 239 - 249
  • [16] Toward a fully automated calculation of rovibrational infrared intensities for semi-rigid polyatomic molecules
    Erfort, Sebastian
    Tschoepe, Martin
    Rauhut, Guntram
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (24):
  • [17] THEORETICAL METHODS FOR ROVIBRATIONAL STATES OF FLOPPY MOLECULES
    BACIC, Z
    LIGHT, JC
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1989, 40 : 469 - 498
  • [18] Rovibrational Energies of the Hydrocarboxyl Radical from a RCCSD(T) Study
    Mladenovic, Mirjana
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (32): : 7224 - 7235
  • [19] Accurate rovibrational energies for the first excited torsional state of methylamine
    Gulaczyk, Iwona
    Kreglewski, Marek
    Horneman, Veli-Matti
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2017, 342 : 25 - 30
  • [20] Tests of MULTIMODE calculations of rovibrational energies of CH4
    Wu, Jiayan
    Huang, Xinchuan
    Carter, Stuart
    Bowman, Joel M.
    CHEMICAL PHYSICS LETTERS, 2006, 426 (4-6) : 285 - 289