Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications

被引:13
|
作者
Aguilar, Jean-Philippe [1 ]
Korbel, Jan [2 ,3 ,4 ]
机构
[1] IBRED Banque Populaire, Modeling Dept, 18 Quai Rapee, F-75012 Paris, France
[2] Med Univ Vienna, Sect Sci Complex Syst, Ctr Med Stat Informat & Intelligent Syst CeMSIIS, Spitalgasse 23, A-1090 Vienna, Austria
[3] Complex Sci Hub Vienna, Josefstadterstr 39, A-1080 Vienna, Austria
[4] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic
基金
奥地利科学基金会;
关键词
space-time fractional diffusion; European option pricing; Mellin transform; multidimensional complex analysis;
D O I
10.3390/fractalfract2010015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on option pricing models based on space-time fractional diffusion. We briefly revise recent results which show that the option price can be represented in the terms of rapidly converging double-series and apply these results to the data from real markets. We focus on estimation of model parameters from the market data and estimation of implied volatility within the space-time fractional option pricing models.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] Inverse source problem for a space-time fractional diffusion equation
    Mohamed BenSaleh
    Hassine Maatoug
    Ricerche di Matematica, 2024, 73 : 681 - 713
  • [42] A fast algorithm for solving the space-time fractional diffusion equation
    Duo, Siwei
    Ju, Lili
    Zhang, Yanzhi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1929 - 1941
  • [43] Space-time fractional diffusion equations in d-dimensions
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)
  • [44] Space-time duality and high-order fractional diffusion
    Kelly, James F.
    Meerschaert, Mark M.
    PHYSICAL REVIEW E, 2019, 99 (02)
  • [45] Transient flow in a linear reservoir for space-time fractional diffusion
    Chen, C.
    Raghavan, R.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2015, 128 : 194 - 202
  • [46] INVERSE SOURCE PROBLEM FOR A SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 844 - 863
  • [47] Inverse source problem for a space-time fractional diffusion equation
    BenSaleh, Mohamed
    Maatoug, Hassine
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 681 - 713
  • [48] Nonlinear fractional diffusion model for space-time neutron dynamics
    Hamada, Yasser Mohamed
    PROGRESS IN NUCLEAR ENERGY, 2022, 154
  • [49] Finite element method for space-time fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Gu, Y. T.
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 749 - 767
  • [50] Space-time fractional diffusion: Exact solutions and probability interpretation
    Mainardi, F
    Pagnini, G
    WASCOM 2001: 11TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, PROEEDINGS, 2002, : 296 - 301