Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications

被引:13
|
作者
Aguilar, Jean-Philippe [1 ]
Korbel, Jan [2 ,3 ,4 ]
机构
[1] IBRED Banque Populaire, Modeling Dept, 18 Quai Rapee, F-75012 Paris, France
[2] Med Univ Vienna, Sect Sci Complex Syst, Ctr Med Stat Informat & Intelligent Syst CeMSIIS, Spitalgasse 23, A-1090 Vienna, Austria
[3] Complex Sci Hub Vienna, Josefstadterstr 39, A-1080 Vienna, Austria
[4] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic
基金
奥地利科学基金会;
关键词
space-time fractional diffusion; European option pricing; Mellin transform; multidimensional complex analysis;
D O I
10.3390/fractalfract2010015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on option pricing models based on space-time fractional diffusion. We briefly revise recent results which show that the option price can be represented in the terms of rapidly converging double-series and apply these results to the data from real markets. We focus on estimation of model parameters from the market data and estimation of implied volatility within the space-time fractional option pricing models.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] On some applications of the space-time fractional derivative
    Wasan Ajeel Ahmood
    Adem Kılıçman
    Advances in Difference Equations, 2016
  • [22] Generalized space-time fractional diffusion equation with composite fractional time derivative
    Tomovski, Zivorad
    Sandev, Trifce
    Metzler, Ralf
    Dubbeldam, Johan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (08) : 2527 - 2542
  • [23] Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation
    Tatar, SalIh
    Tinaztepe, Ramazan
    Ulusoy, Suleyman
    APPLICABLE ANALYSIS, 2016, 95 (01) : 1 - 23
  • [24] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [25] An Efficient Space-Time Method for Time Fractional Diffusion Equation
    Shen, Jie
    Sheng, Chang-Tao
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 1088 - 1110
  • [26] Numerical approximation of the space-time fractional diffusion problem
    Pellegrino, Enza
    Pitolli, Francesca
    Sorgentone, Chiara
    IFAC PAPERSONLINE, 2024, 58 (12): : 390 - 394
  • [27] Stochastic solution of space-time fractional diffusion equations
    Meerschaert, MM
    Benson, DA
    Scheffler, HP
    Baeumer, B
    PHYSICAL REVIEW E, 2002, 65 (04): : 4
  • [28] Solutions of the space-time fractional Cattaneo diffusion equation
    Qi, Haitao
    Jiang, Xiaoyun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (11) : 1876 - 1883
  • [29] The space-time fractional diffusion equation with Caputo derivatives
    Huang F.
    Liu F.
    Journal of Applied Mathematics and Computing, 2005, 19 (1-2) : 179 - 190
  • [30] Semianalytic Solution of Space-Time Fractional Diffusion Equation
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016