Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications

被引:13
|
作者
Aguilar, Jean-Philippe [1 ]
Korbel, Jan [2 ,3 ,4 ]
机构
[1] IBRED Banque Populaire, Modeling Dept, 18 Quai Rapee, F-75012 Paris, France
[2] Med Univ Vienna, Sect Sci Complex Syst, Ctr Med Stat Informat & Intelligent Syst CeMSIIS, Spitalgasse 23, A-1090 Vienna, Austria
[3] Complex Sci Hub Vienna, Josefstadterstr 39, A-1080 Vienna, Austria
[4] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic
基金
奥地利科学基金会;
关键词
space-time fractional diffusion; European option pricing; Mellin transform; multidimensional complex analysis;
D O I
10.3390/fractalfract2010015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on option pricing models based on space-time fractional diffusion. We briefly revise recent results which show that the option price can be represented in the terms of rapidly converging double-series and apply these results to the data from real markets. We focus on estimation of model parameters from the market data and estimation of implied volatility within the space-time fractional option pricing models.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] The Space-Time Spectral Method for a Fractional Diffusion Equation
    Huang, Yu
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 347 - 350
  • [32] Modeling and simulation of the fractional space-time diffusion equation
    Gomez-Aguilar, J. F.
    Miranda-Hernandez, M.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Baleanu, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 115 - 127
  • [33] NUMERICAL SIMULATIONS FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS
    Ling, Leevan
    Yamamoto, Masahiro
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (02)
  • [34] Space-time pseudospectral method for the variable-order space-time fractional diffusion equation
    Gupta, Rupali
    Kumar, Sushil
    MATHEMATICAL SCIENCES, 2024, 18 (03) : 419 - 436
  • [35] From the space-time fractional integral of the continuous time random walk to the space-time fractional diffusion equations, a short proof and simulation
    Abdel-Rehim, E. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 531
  • [36] Generalized Finite Integration Method with space-time decomposition technique for solving high dimensional option pricing models
    Sam, C. N.
    Zhang, K. X.
    Hon, Jeffrey M. H.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 146 : 706 - 714
  • [37] Self-similar stochastic models with stationary increments for symmetric space-time fractional diffusion
    Pagnini, Gianni
    2014 IEEE/ASME 10TH INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2014), 2014,
  • [38] Harnack's inequality for a space-time fractional diffusion equation and applications to an inverse source problem
    Jia, Junxiong
    Peng, Jigen
    Yang, Jiaqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (08) : 4415 - 4450
  • [39] Space-time models for hydrological and environmental applications
    Hristopulos, Dionissios T.
    Varouchakis, Emmanouil A.
    Skoien, Jon Olav
    Solomatine, Dimitri
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (09) : 1285 - 1287
  • [40] A new generalized Hilfer-type fractional derivative with applications to space-time diffusion equation
    Khan, Tahir Ullah
    Khan, Muhammad Adil
    Chu, Yu-Ming
    RESULTS IN PHYSICS, 2021, 22