A parallelizable scheme for pseudospectra computing of large matrices

被引:0
|
作者
Otero, B. [1 ]
Astudillo, R. [2 ]
Castillo, Z. [2 ]
机构
[1] Univ Politecn Cataluna, Barcelona TECH, Dept Arquitectura Comp, Barcelona 08034, Spain
[2] Univ Cent Venezuela, Fac Ciencias, Escuela Computac, Ctr Calculo Cient & Tecnol, Caracas 1040, Venezuela
来源
REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA | 2015年 / 31卷 / 01期
关键词
Pseudospectra; Krylov methods; Projection; Data parallelism; ARNOLDI ITERATION; COMPUTATION;
D O I
10.1016/j.rimni.2013.10.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pseudospectra is a powerful tool to study the behavior of dynamic systems associated to non-normal matrices. Studies and applications have increased in the last decades, thus, its efficient computation has become of interest for the scientific community. In the large scale setting, different approaches have been proposed, some of them based on projection on Krylov subspaces. In this work we use the idea proposed by Wright and Trefethen to approximate the pseudospectra of a matrix A using a projection H-m of smaller size. Additionally, we propose a domain decomposition of the interest region into subregions which are assigned to a set of processors. Each processor calculates the minimal singular values of matrices (zI - H-m) where z = x + yi represents a point of the corresponding subregion. We conduct a numerical experimentation comparing the results with those on the literature of the topic. In all cases the proposed scheme shows a reduction in CPU time with respect to the sequential version, achieving from 41x to 101x. (C) 2013 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espa (n) over tildea, S.L.U. All rights reserved.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 50 条
  • [41] Computing pseudospectra using block implicitly restarted Arnoldi iteration
    Astudillo, R.
    Castillo, Z.
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2149 - 2157
  • [42] The design of a distributed MATLAB-based environment for computing pseudospectra
    Bekas, C
    Kokiopoulou, E
    Gallopoulos, E
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2005, 21 (06): : 930 - 941
  • [43] GMRES, PSEUDOSPECTRA, AND CROUZEIX'S CONJECTURE FOR SHIFTED AND SCALED GINIBRE MATRICES
    Chen, Tyler
    Greenbaum, Anne
    Trogdon, Thomas
    MATHEMATICS OF COMPUTATION, 2025, 94 (351) : 241 - 261
  • [44] Mobile Cloud computing architecture for massively parallelizable geometric computation
    Sanchez Ribes, Victor
    Mora, Higinio
    Sobecki, Andrzej
    Mora Gimeno, Francisco Jose
    COMPUTERS IN INDUSTRY, 2020, 123 (123)
  • [45] Fundamental energy cost of finite-time parallelizable computing
    Michael Konopik
    Till Korten
    Eric Lutz
    Heiner Linke
    Nature Communications, 14
  • [46] CRAM-Based Acceleration for Intermittent Computing of Parallelizable Tasks
    Akhunov, Khakim
    Yildirim, Kasm Sinan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2024, 12 (01) : 48 - 59
  • [47] Fundamental energy cost of finite-time parallelizable computing
    Konopik, Michael
    Korten, Till
    Lutz, Eric
    Linke, Heiner
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [48] A highly reliable and parallelizable data distribution scheme for data grids
    Torkestani, Javad Akbari
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2013, 29 (02): : 509 - 519
  • [49] Riccati-based preconditioner for computing invariant subspaces of large matrices
    Robbé, M
    Sadkane, M
    NUMERISCHE MATHEMATIK, 2002, 92 (01) : 129 - 159
  • [50] Riccati-based preconditioner for computing invariant subspaces of large matrices
    M. Robbé
    M. Sadkane
    Numerische Mathematik, 2002, 92 : 129 - 159