A parallelizable scheme for pseudospectra computing of large matrices

被引:0
|
作者
Otero, B. [1 ]
Astudillo, R. [2 ]
Castillo, Z. [2 ]
机构
[1] Univ Politecn Cataluna, Barcelona TECH, Dept Arquitectura Comp, Barcelona 08034, Spain
[2] Univ Cent Venezuela, Fac Ciencias, Escuela Computac, Ctr Calculo Cient & Tecnol, Caracas 1040, Venezuela
来源
REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA | 2015年 / 31卷 / 01期
关键词
Pseudospectra; Krylov methods; Projection; Data parallelism; ARNOLDI ITERATION; COMPUTATION;
D O I
10.1016/j.rimni.2013.10.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pseudospectra is a powerful tool to study the behavior of dynamic systems associated to non-normal matrices. Studies and applications have increased in the last decades, thus, its efficient computation has become of interest for the scientific community. In the large scale setting, different approaches have been proposed, some of them based on projection on Krylov subspaces. In this work we use the idea proposed by Wright and Trefethen to approximate the pseudospectra of a matrix A using a projection H-m of smaller size. Additionally, we propose a domain decomposition of the interest region into subregions which are assigned to a set of processors. Each processor calculates the minimal singular values of matrices (zI - H-m) where z = x + yi represents a point of the corresponding subregion. We conduct a numerical experimentation comparing the results with those on the literature of the topic. In all cases the proposed scheme shows a reduction in CPU time with respect to the sequential version, achieving from 41x to 101x. (C) 2013 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espa (n) over tildea, S.L.U. All rights reserved.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 50 条
  • [31] Parallelizable Implicit Evolution Scheme for Regge Calculus
    Barrett, J. W.
    Galassi, M.
    Miller, W. A.
    Sorkin, R. D.
    International Journal of Theoretical Physics, 36 (04):
  • [32] Parallelizable implicit evolution scheme for Regge calculus
    Barrett, JW
    Galassi, M
    Miller, WA
    Sorkin, RD
    Tuckey, PA
    Williams, RM
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (04) : 815 - 839
  • [33] LOCALIZATION AND PSEUDOSPECTRA OF TWISTED TOEPLITZ MATRICES WITH APPLICATIONS TO ION CHANNELS
    Burrage, Kevin
    Burrage, Pamela
    MacNamara, Shev
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (04) : 1656 - 1679
  • [34] Parallel algorithms for computing the Smith normal form of large matrices
    Jäger, G
    RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, 2003, 2840 : 170 - 179
  • [35] GENERALIZATIONS OF DAVIDSON METHOD FOR COMPUTING EIGENVALUES OF LARGE NONSYMMETRIC MATRICES
    MORGAN, RB
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 101 (02) : 287 - 291
  • [36] Computing the field of values and pseudospectra using the Lanczos method with continuation
    Braconnier, T
    Higham, NJ
    BIT NUMERICAL MATHEMATICS, 1996, 36 (03) : 422 - 440
  • [38] Distributed Algorithms for Computing Very Large Thresholded Covariance Matrices
    Gao, Zekai J.
    Jermaine, Chris
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2016, 11 (02)
  • [39] COMPUTING COMPLEX EIGENVALUES OF LARGE NON-HERMITIAN MATRICES
    KERNER, W
    LERBINGER, K
    STEUERWALD, J
    COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (01) : 27 - 37
  • [40] COMPUTING LARGE SPARSE JACOBIAN MATRICES USING AUTOMATIC DIFFERENTIATION
    AVERICK, BM
    MORE, JJ
    BISCHOF, CH
    CARLE, A
    GRIEWANK, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02): : 285 - 294