A parallelizable scheme for pseudospectra computing of large matrices

被引:0
|
作者
Otero, B. [1 ]
Astudillo, R. [2 ]
Castillo, Z. [2 ]
机构
[1] Univ Politecn Cataluna, Barcelona TECH, Dept Arquitectura Comp, Barcelona 08034, Spain
[2] Univ Cent Venezuela, Fac Ciencias, Escuela Computac, Ctr Calculo Cient & Tecnol, Caracas 1040, Venezuela
来源
REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA | 2015年 / 31卷 / 01期
关键词
Pseudospectra; Krylov methods; Projection; Data parallelism; ARNOLDI ITERATION; COMPUTATION;
D O I
10.1016/j.rimni.2013.10.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pseudospectra is a powerful tool to study the behavior of dynamic systems associated to non-normal matrices. Studies and applications have increased in the last decades, thus, its efficient computation has become of interest for the scientific community. In the large scale setting, different approaches have been proposed, some of them based on projection on Krylov subspaces. In this work we use the idea proposed by Wright and Trefethen to approximate the pseudospectra of a matrix A using a projection H-m of smaller size. Additionally, we propose a domain decomposition of the interest region into subregions which are assigned to a set of processors. Each processor calculates the minimal singular values of matrices (zI - H-m) where z = x + yi represents a point of the corresponding subregion. We conduct a numerical experimentation comparing the results with those on the literature of the topic. In all cases the proposed scheme shows a reduction in CPU time with respect to the sequential version, achieving from 41x to 101x. (C) 2013 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espa (n) over tildea, S.L.U. All rights reserved.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 50 条
  • [21] Perforated strict pseudospectra of Demmel's matrices
    Armentia, Gorka
    Gracia, Juan-Miguel
    Velasco, Francisco-Enrique
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 548 : 77 - 94
  • [22] Infinite-dimensional features of matrices and pseudospectra
    Pal, Avijit
    Yakubovich, Dmitry V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) : 109 - 127
  • [23] Spectra, pseudospectra, and localization for random bidiagonal matrices
    Trefethen, LN
    Contedini, M
    Embree, M
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (05) : 595 - 623
  • [24] A parallelizable eigensolver for real diagonalizable matrices with real eigenvalues
    HussLederman, S
    Tsao, A
    Turnbull, T
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (03): : 869 - 885
  • [25] An Online Multiple Kernel Parallelizable Learning Scheme
    Ruiz-Moreno, Emilio
    Beferull-Lozano, Baltasar
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 121 - 125
  • [26] Gibbs sampler for computing and propagating large covariance matrices
    Gundlich, B
    Koch, KR
    Kusche, J
    JOURNAL OF GEODESY, 2003, 77 (09) : 514 - 528
  • [27] Gibbs sampler for computing and propagating large covariance matrices
    B. Gundlich
    K.-R. Koch
    J. Kusche
    Journal of Geodesy, 2003, 77 : 514 - 528
  • [28] Computing Interior Eigenvalues of Large Sparse Symmetric Matrices
    Dax A.
    International Journal of Applied and Computational Mathematics, 2021, 7 (6)
  • [29] Computing Large-scale Distance Matrices on GPU
    Arefin, Ahmed Shamsul
    Riveros, Carlos
    Berretta, Regina
    Moscato, Pablo
    PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 576 - 580
  • [30] Parallelizable implicit evolution scheme for Regge calculus
    John W. Barrett
    Mark Galassi
    Warner A. Miller
    Rafael D. Sorkin
    Philip A. Tuckey
    Ruth M. Williams
    International Journal of Theoretical Physics, 1997, 36 : 815 - 839