Artificial Intelligence and Cardiovascular Genetics

被引:24
|
作者
Krittanawong, Chayakrit [1 ,2 ,3 ,4 ]
Johnson, Kipp W. [3 ,5 ]
Choi, Edward [6 ]
Kaplin, Scott [2 ]
Venner, Eric [4 ]
Murugan, Mullai [7 ]
Wang, Zhen [8 ,9 ]
Glicksberg, Benjamin S. [3 ,5 ]
Amos, Christopher I. [10 ]
Schatz, Michael C. [11 ,12 ]
Tang, W. H. Wilson [13 ,14 ,15 ]
机构
[1] Baylor Coll Med, Sect Cardiol, Houston, TX 77030 USA
[2] NYU Langone, Dept Cardiovasc Med, New York, NY 10016 USA
[3] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, New York, NY 10029 USA
[4] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Mol & Human Genet, Houston, TX 77030 USA
[5] Icahn Sch Med Mt Sinai, Inst Next Generat Healthcare, Dept Genet & Genom Sci, New York, NY 10029 USA
[6] Google, Google Hlth Res, Mountain View, CA 94043 USA
[7] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Software Dev, Houston, TX 77030 USA
[8] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deli, Rochester, MN 55905 USA
[9] Mayo Clin, Dept Hlth Sci Res, Div Hlth Care Policy & Res, Rochester, MN 55905 USA
[10] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX 77030 USA
[11] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA
[13] Cleveland Clin, Inst Heart & Vasc, Dept Cardiovasc Med, Cleveland, OH 44195 USA
[14] Lerner Res Inst, Dept Cellular & Mol Med, Cleveland, OH 44195 USA
[15] Cleveland Clin, Ctr Clin Genom, Cleveland, OH 44195 USA
来源
LIFE-BASEL | 2022年 / 12卷 / 02期
关键词
genomics; AI; genetics; deep learning; cardiovascular disease; cardiology; machine learning; artificial intelligence; CORONARY-ARTERY-DISEASE; POLYGENIC RISK SCORES; HYPERTROPHIC CARDIOMYOPATHY; PREDICTION; GENOMICS; ASSOCIATION; VARIANTS; IDENTIFICATION; VALIDATION; HEALTH;
D O I
10.3390/life12020279
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This review discusses the current opportunities and limitations of genomics; provides a brief overview of AI; and identifies the current applications, limitations, and future directions of AI in genomics.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Artificial intelligence to improve the diagnosis of cardiovascular diseases
    Irene Fernández-Ruiz
    Nature Reviews Cardiology, 2019, 16 : 133 - 133
  • [42] Artificial Intelligence Advances in the World of Cardiovascular Imaging
    Patel, Bhakti
    Makaryus, Amgad N.
    HEALTHCARE, 2022, 10 (01)
  • [43] Prospects for cardiovascular medicine using artificial intelligence
    Kodera, Satoshi
    Akazawa, Hiroshi
    Morita, Hiroyuki
    Komuro, Issei
    JOURNAL OF CARDIOLOGY, 2022, 79 (03) : 319 - 325
  • [44] Artificial Intelligence in Cardiovascular Diseases and Vascular Surgery
    Paraskevas, Kosmas I.
    Saba, Luca
    Papaioannou, Vasileios
    Suri, Jasjit
    ANGIOLOGY, 2024,
  • [45] Artificial Intelligence in Cardiovascular Magnetic Resonance Imaging
    Castellaccio, A.
    Arostegui, N. Almeida
    Jimenez, M. Palomo
    Tapia, D. Quinones
    Zurita, M. Bret
    Galvan, E. Vano
    RADIOLOGIA, 2025, 67 (02): : 239 - 247
  • [46] Artificial intelligence: the pathway to the future of cardiovascular medicine
    Luescher, Thomas F.
    Lyon, Alexander
    Amstein, Ruth
    Maisel, Alan
    EUROPEAN HEART JOURNAL, 2022, 43 (07) : 556 - 558
  • [47] Addressing bias: artificial intelligence in cardiovascular medicine
    Tat, Emily
    Bhatt, Deepak L.
    Rabbat, Mark G.
    LANCET DIGITAL HEALTH, 2020, 2 (12): : E635 - E636
  • [48] Genetics and precision health: the ecological fallacy and artificial intelligence solutions
    Williams, Scott M.
    Moore, Jason H.
    BIODATA MINING, 2023, 16 (01)
  • [49] Artificial Intelligence and Forensic Genetics: Current Applications and Future Perspectives
    Sessa, Francesco
    Esposito, Massimiliano
    Cocimano, Giuseppe
    Sablone, Sara
    Karaboue, Michele Ahmed Antonio
    Chisari, Mario
    Albano, Davide Giuseppe
    Salerno, Monica
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [50] Genetics and precision health: the ecological fallacy and artificial intelligence solutions
    Scott M. Williams
    Jason H. Moore
    BioData Mining, 16