Artificial Intelligence and Cardiovascular Genetics

被引:24
|
作者
Krittanawong, Chayakrit [1 ,2 ,3 ,4 ]
Johnson, Kipp W. [3 ,5 ]
Choi, Edward [6 ]
Kaplin, Scott [2 ]
Venner, Eric [4 ]
Murugan, Mullai [7 ]
Wang, Zhen [8 ,9 ]
Glicksberg, Benjamin S. [3 ,5 ]
Amos, Christopher I. [10 ]
Schatz, Michael C. [11 ,12 ]
Tang, W. H. Wilson [13 ,14 ,15 ]
机构
[1] Baylor Coll Med, Sect Cardiol, Houston, TX 77030 USA
[2] NYU Langone, Dept Cardiovasc Med, New York, NY 10016 USA
[3] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, New York, NY 10029 USA
[4] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Mol & Human Genet, Houston, TX 77030 USA
[5] Icahn Sch Med Mt Sinai, Inst Next Generat Healthcare, Dept Genet & Genom Sci, New York, NY 10029 USA
[6] Google, Google Hlth Res, Mountain View, CA 94043 USA
[7] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Software Dev, Houston, TX 77030 USA
[8] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deli, Rochester, MN 55905 USA
[9] Mayo Clin, Dept Hlth Sci Res, Div Hlth Care Policy & Res, Rochester, MN 55905 USA
[10] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX 77030 USA
[11] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA
[13] Cleveland Clin, Inst Heart & Vasc, Dept Cardiovasc Med, Cleveland, OH 44195 USA
[14] Lerner Res Inst, Dept Cellular & Mol Med, Cleveland, OH 44195 USA
[15] Cleveland Clin, Ctr Clin Genom, Cleveland, OH 44195 USA
来源
LIFE-BASEL | 2022年 / 12卷 / 02期
关键词
genomics; AI; genetics; deep learning; cardiovascular disease; cardiology; machine learning; artificial intelligence; CORONARY-ARTERY-DISEASE; POLYGENIC RISK SCORES; HYPERTROPHIC CARDIOMYOPATHY; PREDICTION; GENOMICS; ASSOCIATION; VARIANTS; IDENTIFICATION; VALIDATION; HEALTH;
D O I
10.3390/life12020279
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This review discusses the current opportunities and limitations of genomics; provides a brief overview of AI; and identifies the current applications, limitations, and future directions of AI in genomics.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Artificial intelligence in the diagnosis of cardiovascular disease
    Campos Zeron, Rubens Moura
    Serrano Junior, Carlos Vicente
    REVISTA DA ASSOCIACAO MEDICA BRASILEIRA, 2019, 65 (12): : 1438 - 1441
  • [22] Artificial Intelligence in Precision Cardiovascular Medicine
    Krittanawong, Chayakrit
    Zhang, HongJu
    Wang, Zhen
    Aydar, Mehmet
    Kitai, Takeshi
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (21) : 2657 - 2664
  • [23] Applications of artificial intelligence in cardiovascular imaging
    Sermesant, Maxime
    Delingette, Herve
    Cochet, Hubert
    Jais, Pierre
    Ayache, Nicholas
    NATURE REVIEWS CARDIOLOGY, 2021, 18 (08) : 600 - 609
  • [24] Artificial Intelligence in cardiovascular medical imaging
    Stanciu, Silviu
    Tache, Irina A.
    Gurzun, Magdalena
    Sorici, Alexandru
    Croitoru, Alexandru
    Cuzino, Dragos
    Tudor, Diana L.
    Lazara, Sorin
    ROMANIAN JOURNAL OF MILITARY MEDICINE, 2020, 123 (04) : 310 - 316
  • [25] Artificial intelligence in cardiovascular medicine in China
    Han, Yaling
    EUROPEAN HEART JOURNAL, 2022, 43 (19) : 1782 - 1783
  • [26] Artificial Intelligence for Cardiac Imaging-Genetics Research
    de Marvao, Antonio
    Dawes, Timothy J. W.
    O'Regan, Declan P.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 6
  • [27] Artificial Intelligence and Classical Methods in Animal Genetics and Breeding
    Soloshenkov, A. D.
    Soloshenkova, E. A.
    Semina, M. T.
    Spasskaya, N. N.
    Voronkova, V. N.
    Stolpovky, Y. A.
    RUSSIAN JOURNAL OF GENETICS, 2024, 60 (07) : 843 - 856
  • [28] CARDIOVASCULAR DISEASE DIAGNOSIS USING CARDIOVASCULAR IMAGING AND ARTIFICIAL INTELLIGENCE
    Miao, Julia
    Miao, Kathleen H.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 1343 - 1343
  • [29] Artificial intelligence to improve the diagnosis of cardiovascular diseases
    Fernandez-Ruiz, Irene
    NATURE REVIEWS CARDIOLOGY, 2019, 16 (03) : 133 - 133
  • [30] Artificial intelligence: improving the efficiency of cardiovascular imaging
    Lin, Andrew
    Kolossvary, Marton
    Isgum, Ivana
    Maurovich-Horvat, Pal
    Slomka, Piotr J.
    Dey, Damini
    EXPERT REVIEW OF MEDICAL DEVICES, 2020, 17 (06) : 565 - 577