Artificial Intelligence and Cardiovascular Genetics

被引:24
|
作者
Krittanawong, Chayakrit [1 ,2 ,3 ,4 ]
Johnson, Kipp W. [3 ,5 ]
Choi, Edward [6 ]
Kaplin, Scott [2 ]
Venner, Eric [4 ]
Murugan, Mullai [7 ]
Wang, Zhen [8 ,9 ]
Glicksberg, Benjamin S. [3 ,5 ]
Amos, Christopher I. [10 ]
Schatz, Michael C. [11 ,12 ]
Tang, W. H. Wilson [13 ,14 ,15 ]
机构
[1] Baylor Coll Med, Sect Cardiol, Houston, TX 77030 USA
[2] NYU Langone, Dept Cardiovasc Med, New York, NY 10016 USA
[3] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, New York, NY 10029 USA
[4] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Mol & Human Genet, Houston, TX 77030 USA
[5] Icahn Sch Med Mt Sinai, Inst Next Generat Healthcare, Dept Genet & Genom Sci, New York, NY 10029 USA
[6] Google, Google Hlth Res, Mountain View, CA 94043 USA
[7] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Software Dev, Houston, TX 77030 USA
[8] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deli, Rochester, MN 55905 USA
[9] Mayo Clin, Dept Hlth Sci Res, Div Hlth Care Policy & Res, Rochester, MN 55905 USA
[10] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX 77030 USA
[11] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA
[13] Cleveland Clin, Inst Heart & Vasc, Dept Cardiovasc Med, Cleveland, OH 44195 USA
[14] Lerner Res Inst, Dept Cellular & Mol Med, Cleveland, OH 44195 USA
[15] Cleveland Clin, Ctr Clin Genom, Cleveland, OH 44195 USA
来源
LIFE-BASEL | 2022年 / 12卷 / 02期
关键词
genomics; AI; genetics; deep learning; cardiovascular disease; cardiology; machine learning; artificial intelligence; CORONARY-ARTERY-DISEASE; POLYGENIC RISK SCORES; HYPERTROPHIC CARDIOMYOPATHY; PREDICTION; GENOMICS; ASSOCIATION; VARIANTS; IDENTIFICATION; VALIDATION; HEALTH;
D O I
10.3390/life12020279
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This review discusses the current opportunities and limitations of genomics; provides a brief overview of AI; and identifies the current applications, limitations, and future directions of AI in genomics.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Artificial Intelligence in Cardiovascular CT and MR Imaging
    Lanzafame, Ludovica R. M.
    Bucolo, Giuseppe M. M.
    Muscogiuri, Giuseppe
    Sironi, Sandro
    Gaeta, Michele
    Ascenti, Giorgio
    Booz, Christian
    Vogl, Thomas J. J.
    Blandino, Alfredo
    Mazziotti, Silvio
    D'Angelo, Tommaso
    LIFE-BASEL, 2023, 13 (02):
  • [32] Artificial intelligence to improve cardiovascular population health
    Meder, Benjamin
    Asselbergs, Folkert W.
    Ashley, Euan
    EUROPEAN HEART JOURNAL, 2025,
  • [33] Artificial Intelligence in the Prevention and Detection of Cardiovascular Disease
    Whiteson, Harris Z.
    Frishman, William H.
    CARDIOLOGY IN REVIEW, 2025, 33 (03) : 239 - 242
  • [34] Artificial Intelligence, Bob Dylan, and Cardiovascular Scholarship
    Dauerman, Harold L.
    Turco, Justine Varieur
    Fuster, Valentin
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 82 (09) : 961 - 963
  • [35] Artificial Intelligence, Machine Learning, and Cardiovascular Disease
    Mathur, Pankaj
    Srivastava, Shweta
    Xu, Xiaowei
    Mehta, Jawahar L.
    CLINICAL MEDICINE INSIGHTS-CARDIOLOGY, 2020, 14
  • [36] Artificial intelligence in cardiovascular medicine: clinical applications
    Luscher, Thomas F.
    Wenzl, Florian A.
    D'Ascenzo, Fabrizio
    Friedman, Paul A.
    Antoniades, Charalambos
    EUROPEAN HEART JOURNAL, 2024, 45 (40) : 4291 - 4304
  • [37] Application of Artificial Intelligence to Cardiovascular Computed Tomography
    Yang, Dong Hyun
    KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (10) : 1597 - 1608
  • [38] Artificial Intelligence in Cardiovascular Medicine - Status and Perspectives
    Radke, Peter
    AKTUELLE KARDIOLOGIE, 2023, 12 (06) : 433 - 438
  • [39] Recent Advances of Artificial Intelligence in Cardiovascular Disease
    Chen, Zhu
    Xiao, Changhu
    Qiu, Haihua
    Tan, Xinxing
    Jin, Lian
    He, Yi
    Guo, Yuan
    He, Nongyue
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2020, 16 (07) : 1065 - 1081
  • [40] Artificial intelligence: transforming cardiovascular healthcare in Africa
    Ashinze, Patrick
    Akande, Eniola
    Bethrand, Chukwu
    Obafemi, Eniola
    David, Olafisoye-Oragbade Oluwatosin
    Akobe, Suleiman Nasiru
    Joyce, Ndubuisi Onyinyechukwu
    Izuchukwu, Obidiegwu Jonathan
    Okoro, Ngozi Peace
    EGYPTIAN HEART JOURNAL, 2024, 76 (01):