Artificial Intelligence and Cardiovascular Genetics

被引:24
|
作者
Krittanawong, Chayakrit [1 ,2 ,3 ,4 ]
Johnson, Kipp W. [3 ,5 ]
Choi, Edward [6 ]
Kaplin, Scott [2 ]
Venner, Eric [4 ]
Murugan, Mullai [7 ]
Wang, Zhen [8 ,9 ]
Glicksberg, Benjamin S. [3 ,5 ]
Amos, Christopher I. [10 ]
Schatz, Michael C. [11 ,12 ]
Tang, W. H. Wilson [13 ,14 ,15 ]
机构
[1] Baylor Coll Med, Sect Cardiol, Houston, TX 77030 USA
[2] NYU Langone, Dept Cardiovasc Med, New York, NY 10016 USA
[3] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, New York, NY 10029 USA
[4] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Mol & Human Genet, Houston, TX 77030 USA
[5] Icahn Sch Med Mt Sinai, Inst Next Generat Healthcare, Dept Genet & Genom Sci, New York, NY 10029 USA
[6] Google, Google Hlth Res, Mountain View, CA 94043 USA
[7] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Software Dev, Houston, TX 77030 USA
[8] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deli, Rochester, MN 55905 USA
[9] Mayo Clin, Dept Hlth Sci Res, Div Hlth Care Policy & Res, Rochester, MN 55905 USA
[10] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX 77030 USA
[11] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA
[13] Cleveland Clin, Inst Heart & Vasc, Dept Cardiovasc Med, Cleveland, OH 44195 USA
[14] Lerner Res Inst, Dept Cellular & Mol Med, Cleveland, OH 44195 USA
[15] Cleveland Clin, Ctr Clin Genom, Cleveland, OH 44195 USA
来源
LIFE-BASEL | 2022年 / 12卷 / 02期
关键词
genomics; AI; genetics; deep learning; cardiovascular disease; cardiology; machine learning; artificial intelligence; CORONARY-ARTERY-DISEASE; POLYGENIC RISK SCORES; HYPERTROPHIC CARDIOMYOPATHY; PREDICTION; GENOMICS; ASSOCIATION; VARIANTS; IDENTIFICATION; VALIDATION; HEALTH;
D O I
10.3390/life12020279
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This review discusses the current opportunities and limitations of genomics; provides a brief overview of AI; and identifies the current applications, limitations, and future directions of AI in genomics.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Opportunities and challenges for artificial intelligence in clinical cardiovascular genetics
    Krittanawong, Chayakrit
    Johnson, Kipp W.
    Glicksberg, Benjamin S.
    TRENDS IN GENETICS, 2021, 37 (09) : 780 - 783
  • [2] Artificial Intelligence in Genetics
    Vilhekar, Rohit S.
    Rawekar, Alka
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (01)
  • [3] Artificial intelligence in clinical genetics
    Duong, Dat
    Solomon, Benjamin D.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2025, : 281 - 288
  • [4] Artificial intelligence and the impact on medical genetics
    Solomon, Benjamin D.
    Chung, Wendy K. K.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS, 2023, 193 (03)
  • [5] Artificial intelligence for dementia genetics and omics
    Bettencourt, Conceicao
    Skene, Nathan
    Bandres-Ciga, Sara
    Anderson, Emma M.
    Winchester, Laura F.
    Foote, Isabelle
    Schwartzentruber, Jeremy A.
    Botia, Juan
    Nalls, Mike
    Singleton, Andrew M.
    Schilder, Brian
    Humphrey, Jack J.
    Marzi, Sarah E.
    Toomey, Christina
    Al Kleifat, Ahmad L.
    Harshfield, Eric
    Garfield, Victoria
    Sandor, Cynthia
    Keat, Samuel
    Tamburin, Stefano
    Frigerio, Carlo Sala
    Lourida, Ilianna
    Ranson, Janice M.
    Llewellyn, David
    ALZHEIMERS & DEMENTIA, 2023, 19 (12) : 5905 - 5921
  • [6] Artificial Intelligence in Cardiovascular Medicine
    Seetharam K.
    Shrestha S.
    Sengupta P.P.
    Current Treatment Options in Cardiovascular Medicine, 2019, 21 (5)
  • [7] Artificial intelligence in cardiovascular medicine
    Ranka, Sagar
    Reddy, Madhu
    Noheria, Amit
    CURRENT OPINION IN CARDIOLOGY, 2021, 36 (01) : 26 - 35
  • [8] Good quality practices for artificial intelligence in genetics
    Menard, Timothe
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (09) : 993 - 995
  • [9] Good quality practices for artificial intelligence in genetics
    Timothé Ménard
    European Journal of Human Genetics, 2022, 30 : 993 - 995
  • [10] Artificial intelligence powered statistical genetics in biobanks
    Akira Narita
    Masao Ueki
    Gen Tamiya
    Journal of Human Genetics, 2021, 66 : 61 - 65