Deep variational autoencoders for breast cancer tissue modeling and synthesis in SFDI

被引:0
|
作者
Pardo, Arturo [1 ,2 ]
Lopez-Higuera, Jose M. [1 ,2 ,3 ]
Pogue, Brian W. [4 ]
Conde, Olga M. [1 ,2 ,3 ]
机构
[1] Univ Cantabria, Photon Engn Grp GIF, TEISA Dept, Edificio IDi Telecomuniac,Avda Castros S-N, E-39005 Santander, Cantabria, Spain
[2] Inst Invest Sanitaria Valdecilla IDIVAL, Santander 39011, Cantabria, Spain
[3] Biomed Res Networking Ctr Bioengn Nanomat & Nanos, Ave Monforte de Lemos,3-5 Pabellon 11,Planta 0, Madrid 28029, Spain
[4] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
关键词
Deep learning; modulated imaging; optical properties; spatial frequency domain imaging; breast cancer; variational autoencoder; turbid media;
D O I
10.1117/12.2527142
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracting pathology information embedded within surface optical properties in Spatial Frequency Domain Imaging (SFDI) datasets is still a rather cumbersome nonlinear translation problem, mainly constrained by intrasample and interpatient variability, as well as dataset size. The beta-variational autoencoder (beta-VAE) is a rather novel dimensionality reduction technique where a tractable set of latent low-dimensional embeddings can be obtained from a given dataset. These embeddings can then be sampled to synthesize new data, providing further insight into pathology variability as well as differentiability in terms of optical properties. Its applications for data classification and breast margin delineation are also discussed.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Deep Stacked Sparse Autoencoders - A Breast Cancer Classifier
    Munir, Muhammad Asif
    Aslam, Muhammad Aqeel
    Shafique, Muhammad
    Ahmed, Rauf
    Mehmood, Zafar
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2022, 41 (01) : 41 - 52
  • [2] Deep Variational Autoencoders for NPC Behaviour Classification
    Soares, Everton Schumacker
    Bulitko, Vadim
    2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [3] Breast Cancer Induced Bone Osteolysis Prediction Using Temporal Variational Autoencoders
    Xiong, Wei
    Yeung, Neil
    Wang, Shubo
    Liao, Haofu
    Wang, Liyun
    Luo, Jiebo
    BME FRONTIERS, 2022, 2022
  • [4] Modeling and Transforming Speech using Variational Autoencoders
    Blaauw, Merlijn
    Bonada, Jordi
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 1770 - 1774
  • [5] DYNAMIC VARIATIONAL AUTOENCODERS FOR VISUAL PROCESS MODELING
    Sager, Alexander
    Shen, Hao
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3677 - 3681
  • [6] An entangled mixture of variational autoencoders approach to deep clustering
    Caciularu, Avi
    Goldberger, Jacob
    NEUROCOMPUTING, 2023, 529 : 182 - 189
  • [7] Evolving Deep Convolutional Variational Autoencoders for Image Classification
    Chen, Xiangru
    Sun, Yanan
    Zhang, Mengjie
    Peng, Dezhong
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (05) : 815 - 829
  • [8] Factorized Variational Autoencoders for Modeling Audience Reactions to Movies
    Deng, Zhiwei
    Navarathna, Rajitha
    Carr, Peter
    Mandt, Stephan
    Yue, Yisong
    Matthews, Iain
    Mori, Greg
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6014 - 6023
  • [9] Toward aerodynamic surrogate modeling based on β-variational autoencoders
    Frances-Belda, Victor
    Solera-Rico, Alberto
    Nieto-Centenero, Javier
    Andres, Esther
    Vila, Carlos Sanmiguel
    Castellanos, Rodrigo
    PHYSICS OF FLUIDS, 2024, 36 (11)
  • [10] Bridged Variational Autoencoders for Joint Modeling of Images and Attributes
    Yadav, Ravindra
    Sardana, Ashish
    Namboodiri, Vinay P.
    Hegde, Rajesh M.
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1468 - 1476