Nordhaus-Gaddum-type theorems for decompositions into many parts

被引:15
|
作者
Füredi, Z
Kostochka, AV
Skrekovski, R
Stiebitz, M
West, DB
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Renyi Inst Math, H-1364 Budapest, Hungary
[3] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
[4] Charles Univ Prague, CR-18000 Prague, Czech Republic
[5] Univ Ljubljana, Ljubljana 1111, Slovenia
[6] Tech Univ Ilmenau, D-98693 Ilmenau, Germany
关键词
graph decomposition; Nordhaus-Gaddum Theorem; chromatic number; coloring number; list chromatic number; surface embedding;
D O I
10.1002/jgt.20113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-decomposition (G(1),...,G(k)) of a graph G is a partition of its edge set to form k spanning subgraphs G(1),...,G(k). The classical theorem of Nordhaus and Gaddum bounds chi(G(1)) + chi(G(2)) and chi(G(1))chi(G(2)) over all 2-decompositions of K, For a graph parameter p, let p(k;G) denote the maximum of Sigma(k)(i=1) p(G(i)) over all k-decompositions of the graph G. The clique number omega, chromatic number chi, list chromatic number chi(l), and Szekeres-Wilf number sigma satisfy omega(2;K-n) = chi(2;K-n) = X-l(2;K-n) = sigma(2;K-n) = n + 1. We obtain lower and upper bounds for omega(k;K-n), chi(k;K-n), chi(l)(k;K-n), and alpha(k;K-n). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of X(k; G) over all graphs embedded on a given surface. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 50 条
  • [41] ON HADWIGER NUMBER - A PROBLEM OF THE NORDHAUS-GADDUM TYPE
    STIEBITZ, M
    DISCRETE MATHEMATICS, 1992, 101 (1-3) : 307 - 317
  • [42] More eigenvalue problems of Nordhaus-Gaddum type
    Nikiforov, Vladimir
    Yuan, Xiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 451 : 231 - 245
  • [43] Nordhaus-Gaddum type inequalities for the kth Laplacian
    Li, Wen-Jun
    Guo, Ji-Ming
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [44] Nordhaus-Gaddum type results for graph irregularities
    Ma, Yuede
    Cao, Shujuan
    Shi, Yongtang
    Dehmer, Matthias
    Xia, Chengyi
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 343 : 268 - 272
  • [45] Nordhaus-Gaddum type inequalities for the distinguishing index
    Pilsniak, Monika
    ARS MATHEMATICA CONTEMPORANEA, 2021, 20 (02) : 223 - 231
  • [46] NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED AND TOTAL DOMINATION
    Khoeilar, Rana
    Karami, Hossein
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    RAIRO-OPERATIONS RESEARCH, 2021, 55 : S853 - S862
  • [47] PRODUCTS OF GRAPHS AND NORDHAUS-GADDUM TYPE INEQUALITIES
    Keyvan, Nastran
    Rahmati, Farhad
    TRANSACTIONS ON COMBINATORICS, 2018, 7 (01) : 30 - 35
  • [48] Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs
    Wang, Tianfei
    Jia, Liping
    Sun, Feng
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [49] NORDHAUS-GADDUM TYPE RELATIONS FOR SOME TOPOLOGICAL INDICES
    Kureethara, J., V
    Majhi, B. K.
    Mahalank, P.
    Cangul, I. N.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (01): : 183 - 193
  • [50] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 57 - 72