Nordhaus-Gaddum-type theorems for decompositions into many parts

被引:15
|
作者
Füredi, Z
Kostochka, AV
Skrekovski, R
Stiebitz, M
West, DB
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Renyi Inst Math, H-1364 Budapest, Hungary
[3] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
[4] Charles Univ Prague, CR-18000 Prague, Czech Republic
[5] Univ Ljubljana, Ljubljana 1111, Slovenia
[6] Tech Univ Ilmenau, D-98693 Ilmenau, Germany
关键词
graph decomposition; Nordhaus-Gaddum Theorem; chromatic number; coloring number; list chromatic number; surface embedding;
D O I
10.1002/jgt.20113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-decomposition (G(1),...,G(k)) of a graph G is a partition of its edge set to form k spanning subgraphs G(1),...,G(k). The classical theorem of Nordhaus and Gaddum bounds chi(G(1)) + chi(G(2)) and chi(G(1))chi(G(2)) over all 2-decompositions of K, For a graph parameter p, let p(k;G) denote the maximum of Sigma(k)(i=1) p(G(i)) over all k-decompositions of the graph G. The clique number omega, chromatic number chi, list chromatic number chi(l), and Szekeres-Wilf number sigma satisfy omega(2;K-n) = chi(2;K-n) = X-l(2;K-n) = sigma(2;K-n) = n + 1. We obtain lower and upper bounds for omega(k;K-n), chi(k;K-n), chi(l)(k;K-n), and alpha(k;K-n). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of X(k; G) over all graphs embedded on a given surface. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 50 条
  • [31] SOME THEOREMS OF THE NORDHAUS-GADDUM CLASS
    WANG Zhijian Department of Mathematics
    SystemsScienceandMathematicalSciences, 1993, (03) : 239 - 244
  • [32] Nordhaus-Gaddum-type results for path covering and L(2,1)-labeling numbers
    Lu, Damei
    Du, Juan
    Lin, Nianfeng
    Zhang, Ke
    Yi, Dan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (02) : 502 - 510
  • [33] Tight Nordhaus-Gaddum-Type Upper Bound for Total-Rainbow Connection Number of Graphs
    Li, Wenjing
    Li, Xueliang
    Magnant, Colton
    Zhang, Jingshu
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 2079 - 2100
  • [34] Product Nordhaus-Gaddum-type results for the induced path number involving complements with respect to Kn or Kn,n
    Hattingh, J. H.
    Saleh, O. A.
    van der Merwe, L. C.
    Walters, T. J.
    UTILITAS MATHEMATICA, 2014, 94 : 275 - 285
  • [35] Eigenvalue problems of Nordhaus-Gaddum type
    Nikiforov, Vladimir
    DISCRETE MATHEMATICS, 2007, 307 (06) : 774 - 780
  • [36] The Nordhaus-Gaddum type inequalities of Aα-matrix
    Huang, Xing
    Lin, Huiqiu
    Xue, Jie
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 365
  • [37] A survey of Nordhaus-Gaddum type relations
    Aouchiche, Mustapha
    Hansen, Pierre
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) : 466 - 546
  • [38] ON A NORDHAUS-GADDUM TYPE PROBLEM FOR INDEPENDENT DOMINATION
    COCKAYNE, EJ
    FRICKE, G
    MYNHARDT, CM
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 199 - 205
  • [39] Nordhaus–Gaddum type result for the matching number of a graph
    Huiqiu Lin
    Jinlong Shu
    Baoyindureng Wu
    Journal of Combinatorial Optimization, 2017, 34 : 916 - 930
  • [40] Nordhaus Gaddum-type problems for lines in hypergraphs
    Chen, Xiaomin
    Miao, Peihan
    DISCRETE APPLIED MATHEMATICS, 2016, 198 : 297 - 302