Analyzing Remote Sensing Data in R: The landsat Package

被引:0
|
作者
Goslee, Sarah C. [1 ]
机构
[1] USDA ARS, Pasture Syst & Watershed Management Res Unit, University Pk, PA 16802 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2011年 / 43卷 / 04期
关键词
atmospheric correction; Landsat; radiometric correction; R; remote sensing; satellite; topographic correction; TM DATA; RADIOMETRIC CALIBRATION; IMAGES; CLASSIFICATION; TRANSFORMATION; NORMALIZATION; REFLECTANCE; ETM+;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Research and development on atmospheric and topographic correction methods for multispectral satellite data such as Landsat images has far outpaced the availability of those methods in geographic information systems software. As Landsat and other data become more widely available, demand for these improved correction methods will increase. Open source R statistical software can help bridge the gap between research and implementation. Sophisticated spatial data routines are already available, and the ease of program development in R makes it straightforward to implement new correction algorithms and to assess the results. Collecting radiometric, atmospheric, and topographic correction routines into the landsat package will make them readily available for evaluation for particular applications
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Preliminary Study on the Application of Remote Sensing to Mineral Exploration Using Landsat and ASTER Data
    Lee, Hong-Jin
    Park, Maeng-Eon
    Kim, Eui-Jun
    ECONOMIC AND ENVIRONMENTAL GEOLOGY, 2010, 43 (05): : 467 - 475
  • [42] Interpretation and Research On Landuse Based On Landsat 7 ETM Plus Remote Sensing Data
    Hong, Haoyuan
    Xu, Chong
    Liu, Ximing
    Chen, Wei
    WORLD MULTIDISCIPLINARY EARTH SCIENCES SYMPOSIUM (WMESS 2016), PTS 1-4, 2016, 44
  • [43] A REMOTE SENSING SPATIOTEMPORAL FUSION MODEL OF LANDSAT AND MODIS DATA VIA DEEP LEARNING
    Dai, Peiyu
    Zhang, Hongyan
    Zhang, Liangpei
    Shen, Huanfeng
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7030 - 7033
  • [44] REMOTE-SENSING OF AUSTRALIAN WETLANDS - AN EVALUATION OF LANDSAT TM DATA FOR INVENTORY AND CLASSIFICATION
    JOHNSTON, RM
    BARSON, MM
    AUSTRALIAN JOURNAL OF MARINE AND FRESHWATER RESEARCH, 1993, 44 (02): : 235 - 252
  • [45] Analyzing UAV-Based Remote Sensing and WSN Support for Data Fusion
    Alcarria, Ramon
    Bordel, Borja
    Angel Manso, Miguel
    Iturrioz, Teresa
    Perez, Marina
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY & SYSTEMS (ICITS 2018), 2018, 721 : 756 - 766
  • [46] Analyzing and Predicting Spatiotemporal Urban Sprawl in Eskisehir Using Remote Sensing Data
    Kucuk Matci, Dilek
    Comert, Resul
    Avdan, Ugur
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (05) : 923 - 936
  • [47] Analyzing landslide with multi-temporal remote sensing images and DEM data
    Song, Y
    Fan, XT
    Lu, XC
    Liu, JH
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 5237 - 5239
  • [48] Automated registration and orthorectification package for Landsat and Landsat-like data processing
    Gao, Feng
    Masek, Jeffrey G.
    Wolfe, Robert E.
    JOURNAL OF APPLIED REMOTE SENSING, 2009, 3
  • [49] QuICSeedR: an R package for analyzing fluorophore-assisted seed amplification assay data
    Li, Manci
    Bryant, Damani N.
    Gresch, Sarah
    Milstein, Marissa S.
    Christenson, Peter R.
    Lichtenberg, Stuart S.
    Larsen, Peter A.
    Oh, Sang-Hyun
    BIOINFORMATICS, 2025, 41 (01)
  • [50] APCI: An R and Stata Package for Visualizing and Analyzing Age-Period-Cohort Data
    Xu, Jiahui
    Luo, Liying
    R JOURNAL, 2022, 14 (02): : 77 - 95