Analyzing Remote Sensing Data in R: The landsat Package

被引:0
|
作者
Goslee, Sarah C. [1 ]
机构
[1] USDA ARS, Pasture Syst & Watershed Management Res Unit, University Pk, PA 16802 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2011年 / 43卷 / 04期
关键词
atmospheric correction; Landsat; radiometric correction; R; remote sensing; satellite; topographic correction; TM DATA; RADIOMETRIC CALIBRATION; IMAGES; CLASSIFICATION; TRANSFORMATION; NORMALIZATION; REFLECTANCE; ETM+;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Research and development on atmospheric and topographic correction methods for multispectral satellite data such as Landsat images has far outpaced the availability of those methods in geographic information systems software. As Landsat and other data become more widely available, demand for these improved correction methods will increase. Open source R statistical software can help bridge the gap between research and implementation. Sophisticated spatial data routines are already available, and the ease of program development in R makes it straightforward to implement new correction algorithms and to assess the results. Collecting radiometric, atmospheric, and topographic correction routines into the landsat package will make them readily available for evaluation for particular applications
引用
收藏
页数:25
相关论文
共 50 条
  • [21] pressuRe: an R package for analyzing and visualizing biomechanical pressure distribution data
    Scott Telfer
    Ellen Y. Li
    Scientific Reports, 13
  • [22] marmap: A Package for Importing, Plotting and Analyzing Bathymetric and Topographic Data in R
    Pante, Eric
    Simon-Bouhet, Benoit
    PLOS ONE, 2013, 8 (09):
  • [23] BactMAP: An R package for integrating, analyzing and visualizing bacterial microscopy data
    van Raaphorst, Renske
    Kjos, Morten
    Veening, Jan-Willem
    MOLECULAR MICROBIOLOGY, 2020, 113 (01) : 297 - 308
  • [24] Analyzing case-parent trio data with the R package trio
    Schwender, Holger
    Li, Qing
    Neumann, Christoph
    Taub, Margaret A.
    Younkin, Samuel G.
    Berger, Philipp
    Scharpf, Robert B.
    Beaty, Terri H.
    Ruczinski, Ingo
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 578 - 579
  • [25] Topographic imaging simulation of optical remote sensing based on Landsat TM data
    Qin, Hui-ping
    Yi, Wei-ning
    Ma, Jin-ji
    Ding, Xu-xing
    Zhu, Xiang-bing
    OPTIK, 2013, 124 (07): : 586 - 589
  • [26] Improving the Efficiency of Remote Sensing Data Interpretation by Analyzing Neighborhood Descriptors
    Yamashkin, S. A.
    Yamashkin, A. A.
    MORDOVIA UNIVERSITY BULLETIN, 2018, 28 (03): : 352 - 365
  • [27] REMOTE-SENSING - LANDSAT TO BE BAILED OUT
    EZZELL, C
    NATURE, 1989, 339 (6221) : 166 - 166
  • [28] LANDSAT 1989 - REMOTE-SENSING AT THE CROSSROADS
    GOWARD, SN
    REMOTE SENSING OF ENVIRONMENT, 1989, 28 : 3 - 4
  • [29] RMoCap: an R language package for processing and kinematic analyzing motion capture data
    Hachaj, Tomasz
    Ogiela, Marek R.
    MULTIMEDIA SYSTEMS, 2020, 26 (02) : 157 - 172
  • [30] mmm: An R package for analyzing multivariate longitudinal data with multivariate marginal models
    Asar, Oezguer
    Ilk, Ozlem
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) : 649 - 654