Analyzing Remote Sensing Data in R: The landsat Package

被引:0
|
作者
Goslee, Sarah C. [1 ]
机构
[1] USDA ARS, Pasture Syst & Watershed Management Res Unit, University Pk, PA 16802 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2011年 / 43卷 / 04期
关键词
atmospheric correction; Landsat; radiometric correction; R; remote sensing; satellite; topographic correction; TM DATA; RADIOMETRIC CALIBRATION; IMAGES; CLASSIFICATION; TRANSFORMATION; NORMALIZATION; REFLECTANCE; ETM+;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Research and development on atmospheric and topographic correction methods for multispectral satellite data such as Landsat images has far outpaced the availability of those methods in geographic information systems software. As Landsat and other data become more widely available, demand for these improved correction methods will increase. Open source R statistical software can help bridge the gap between research and implementation. Sophisticated spatial data routines are already available, and the ease of program development in R makes it straightforward to implement new correction algorithms and to assess the results. Collecting radiometric, atmospheric, and topographic correction routines into the landsat package will make them readily available for evaluation for particular applications
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Landsat remote sensing of forest windfall disturbance
    Baumann, Matthias
    Ozdogan, Mutlu
    Wolter, Peter T.
    Krylov, Alexander
    Vladimirova, Nadezda
    Radeloff, Volker C.
    REMOTE SENSING OF ENVIRONMENT, 2014, 143 : 171 - 179
  • [32] RMoCap: an R language package for processing and kinematic analyzing motion capture data
    Tomasz Hachaj
    Marek R. Ogiela
    Multimedia Systems, 2020, 26 : 157 - 172
  • [33] MMRFBiolinks: an R-package for integrating and analyzing MMRF-CoMMpass data
    Settino, Marzia
    Cannataro, Mario
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [34] FishResp: an R-package for Filtering and Analyzing Raw Data in Aquatic Respirometry
    Morozov, Sergey
    McCairns, Scott R. J.
    Merila, Juha
    FASEB JOURNAL, 2017, 31
  • [35] triact package for R: analyzing the lying behavior of cows from accelerometer data
    Simmler, Michael
    Brouwers, Stijn P.
    PEERJ, 2024, 12
  • [36] RespirAnalyzer: an R package for analyzing data from continuous monitoring of respiratory signals
    Zhang, Teng
    Dong, Xinzheng
    Wang, Dandan
    Huang, Chen
    Zhang, Xiaohua Douglas
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [37] intsvy: An R Package for Analyzing International Large-Scale Assessment Data
    Caro, Daniel H.
    Biecek, Przemyslaw
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 81 (07): : 1 - 44
  • [38] CoxPhLb: An R Package for Analyzing Length Biased Data under Cox Model
    Lee, Chi Hyun
    Zhou, Heng
    Ning, Jing
    Liu, Diane D.
    Shen, Yu
    R JOURNAL, 2020, 12 (01): : 118 - 130
  • [39] phenofit: An R package for extracting vegetation phenology from time series remote sensing
    Kong, Dongdong
    McVicar, Tim R.
    Xiao, Mingzhong
    Zhang, Yongqiang
    Pena-Arancibia, Jorge L.
    Filippa, Gianluca
    Xie, Yuxuan
    Gu, Xihui
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (07): : 1508 - 1527
  • [40] Locust remote sensing monitoring methods based on landsat8 satellite data
    Huang, Jianxi
    Zhuo, Wen
    Yang, Chunxi
    Li, Lin
    Zhang, Chao
    Liu, Jia
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2015, 46 (05): : 258 - 264