Weyl magnons in breathing pyrochlore antiferromagnets

被引:180
|
作者
Li, Fei-Ye [1 ]
Li, Yao-Dong [2 ]
Kim, Yong Baek [3 ,4 ]
Balents, Leon [5 ]
Yu, Yue [6 ,7 ,8 ,9 ]
Chen, Gang [6 ,7 ,8 ,9 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[3] Univ Toronto, Dept Phys, Canadian Inst Adv Res, Quantum Mat Program, Toronto, ON MSG 1Z8, Canada
[4] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[5] Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[6] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[7] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[8] Fudan Univ, Dept Phys, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China
[9] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/ncomms12691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Electrically driven Bose-Einstein condensation of magnons in antiferromagnets
    Fjaerbu, Eirik Lohaugen
    Rohling, Niklas
    Brataas, Arne
    PHYSICAL REVIEW B, 2017, 95 (14)
  • [42] AUTOOSCILLATIONS OF THE COUPLED NMR AND COLLECTIVE MODES OF PARAMAGNETIC MAGNONS IN ANTIFERROMAGNETS
    SAFONOV, VL
    FIZIKA TVERDOGO TELA, 1989, 31 (09): : 1 - 5
  • [43] Neutron scattering studies of geometrically frustrated pyrochlore antiferromagnets
    Gaulin, BD
    Gardner, JS
    Dunsiger, SR
    Tun, Z
    Lumsden, MD
    Kiefl, RF
    Raju, NP
    Reimers, JN
    Greedan, JE
    PHYSICA B, 1997, 241 : 511 - 516
  • [44] Topological thermal Hall effect due to Weyl magnons
    Owerre, S. A.
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (11) : 1216 - 1223
  • [45] Dirac and Nodal Line Magnons in Three-Dimensional Antiferromagnets
    Li, Kangkang
    Li, Chenyuan
    Hu, Jiangping
    Li, Yuan
    Fang, Chen
    PHYSICAL REVIEW LETTERS, 2017, 119 (24)
  • [46] Effective Hamiltonians for large-S pyrochlore antiferromagnets
    Hizi, Uzi
    Henley, Christopher L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (14)
  • [47] CRITICAL PROPERTIES OF HIGHLY FRUSTRATED PYROCHLORE ANTIFERROMAGNETS - COMMENT
    MAILHOT, A
    PLUMER, ML
    PHYSICAL REVIEW B, 1993, 48 (13): : 9881 - 9882
  • [48] COLD NEUTRON SCATTERING STUDIES OF FRUSTRATED PYROCHLORE ANTIFERROMAGNETS
    Gardner, J. S.
    Rule, K. C.
    Ruff, J. P. C.
    Clancy, J. P.
    Gaulin, B. D.
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2011, 43 (01) : 7 - 12
  • [49] Power-law spin correlations in pyrochlore antiferromagnets
    Henley, CL
    PHYSICAL REVIEW B, 2005, 71 (01):
  • [50] Magnons versus free spinons in finite quantum frustrated antiferromagnets
    Hamad, I. J.
    Manuel, L. O.
    Trumper, A. E.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (18) : 2858 - 2860