Weyl magnons in breathing pyrochlore antiferromagnets

被引:180
|
作者
Li, Fei-Ye [1 ]
Li, Yao-Dong [2 ]
Kim, Yong Baek [3 ,4 ]
Balents, Leon [5 ]
Yu, Yue [6 ,7 ,8 ,9 ]
Chen, Gang [6 ,7 ,8 ,9 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[3] Univ Toronto, Dept Phys, Canadian Inst Adv Res, Quantum Mat Program, Toronto, ON MSG 1Z8, Canada
[4] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[5] Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[6] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[7] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[8] Fudan Univ, Dept Phys, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China
[9] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/ncomms12691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] RELAXATION RATES OF NUCLEAR MAGNONS IN CUBIC ANTIFERROMAGNETS
    SOARES, EA
    REZENDE, SM
    PHYSICAL REVIEW B, 1977, 15 (09) : 4497 - 4505
  • [22] Dynamics of nonequilibrium magnons in gapped Heisenberg antiferromagnets
    Hua, Chengyun
    Lindsay, Lucas
    Shinohara, Yuya
    Tennant, David Alan
    PHYSICAL REVIEW B, 2024, 109 (05)
  • [23] ATTENUATION OF MAGNONS DUE TO SCATTERING ON IMPURITIES IN ANTIFERROMAGNETS
    BARYAKHTAR, VG
    SOBOLEV, VL
    FIZIKA TVERDOGO TELA, 1977, 19 (10): : 3092 - 3094
  • [24] Nonlinear response of hybrid magnons in synthetic antiferromagnets
    Hayashi, Daiju
    Shiota, Yoichi
    You, Mujin
    Park, Albert Min Gyu
    Kim, Kab-Jin
    Narita, Hideki
    Hisatomi, Ryusuke
    Karube, Shutaro
    Ono, Teruo
    APPLIED PHYSICS LETTERS, 2025, 126 (08)
  • [25] Spin Nernst Effect of Magnons in Collinear Antiferromagnets
    Cheng, Ran
    Okamoto, Satoshi
    Xiao, Di
    PHYSICAL REVIEW LETTERS, 2016, 117 (21)
  • [26] SLOW RELAXATION OF NUCLEAR MAGNONS IN ANTIFERROMAGNETS WITH DEFECTS
    SAFONOV, VL
    FIZIKA NIZKIKH TEMPERATUR, 1987, 13 (06): : 639 - 642
  • [27] Sublattice pairing in pyrochlore Heisenberg antiferromagnets
    Glittum, Cecilie
    Syljuasen, Olav F.
    PHYSICAL REVIEW B, 2023, 108 (01)
  • [28] Magnons in a two-dimensional Weyl magnet
    Chen, Ying-Jiun
    Chuang, Tzu-Hung
    Hanke, Jan-Philipp
    Mokrousov, Yuriy
    Bluegel, Stefan
    Schneider, Claus M.
    Tusche, Christian
    APPLIED PHYSICS LETTERS, 2024, 124 (09)
  • [29] Order by distortion and string modes in pyrochlore antiferromagnets
    Tchernyshyov, O
    Moessner, R
    Sondhi, SL
    PHYSICAL REVIEW LETTERS, 2002, 88 (06) : 67203/1 - 67203/4
  • [30] Stationary self-localized magnons in Heisenberg antiferromagnets
    Ohishi, J
    Kubota, M
    Kawasaki, K
    Takeno, S
    PHYSICAL REVIEW B, 1997, 55 (14): : 8812 - 8820