Weyl magnons in breathing pyrochlore antiferromagnets

被引:180
|
作者
Li, Fei-Ye [1 ]
Li, Yao-Dong [2 ]
Kim, Yong Baek [3 ,4 ]
Balents, Leon [5 ]
Yu, Yue [6 ,7 ,8 ,9 ]
Chen, Gang [6 ,7 ,8 ,9 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[3] Univ Toronto, Dept Phys, Canadian Inst Adv Res, Quantum Mat Program, Toronto, ON MSG 1Z8, Canada
[4] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[5] Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[6] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[7] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[8] Fudan Univ, Dept Phys, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China
[9] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/ncomms12691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Spin-Peierls phases in pyrochlore antiferromagnets
    Tchernyshyov, O
    Moessner, R
    Sondhi, SL
    PHYSICAL REVIEW B, 2002, 66 (06)
  • [32] STATIONARY SELF-LOCALIZED MAGNONS IN HEISENBERG ANTIFERROMAGNETS
    TAKENO, S
    KAWASAKI, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (06) : 1881 - 1884
  • [33] Nonlinear spin current of photoexcited magnons in collinear antiferromagnets
    Fujiwara, Kosuke
    Kitamura, Sota
    Morimoto, Takahiro
    PHYSICAL REVIEW B, 2023, 107 (06)
  • [34] Two-magnons Longitudinal Excitations in the Heisenberg Antiferromagnets
    Boliasova, Olha
    Krivoruchko, Vladimir
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON NANOMATERIALS: APPLICATIONS & PROPERTIES (NAP-2019), PTS 1-2, 2019,
  • [35] Spin Hall and Nernst effects of Weyl magnons
    Zyuzin, Vladimir A.
    Kovalev, Alexey A.
    PHYSICAL REVIEW B, 2018, 97 (17)
  • [36] Order induced by dilution in pyrochlore XY antiferromagnets
    Andreanov, A.
    McClarty, P. A.
    PHYSICAL REVIEW B, 2015, 91 (06):
  • [37] CRITICAL PROPERTIES OF HIGHLY FRUSTRATED PYROCHLORE ANTIFERROMAGNETS
    REIMERS, JN
    GREEDAN, JE
    BJORGVINSSON, M
    PHYSICAL REVIEW B, 1992, 45 (13): : 7295 - 7306
  • [38] Helimagnons in a chiral ground state of the pyrochlore antiferromagnets
    Choi, Eunsong
    Chern, Gia-Wei
    Perkins, Natalia B.
    EPL, 2013, 101 (03)
  • [39] Quasistatic magnetism in the breathing pyrochlore antiferromagnets LiGa1-xInxCr4O8 (x =0.2, 0.5)
    Lee, W.
    Yoon, S.
    Choi, Y. S.
    Do, S. H.
    Ponomaryov, A. N.
    Zvyagin, S. A.
    Gorbunov, D.
    Wosnitza, J.
    Koda, A.
    Chen, W. -t.
    Choi, K. Y.
    Lee, S.
    PHYSICAL REVIEW B, 2024, 110 (14)
  • [40] Breathing skyrmions in chiral antiferromagnets
    Komineas, S.
    Roy, P. E.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):