Unirationality of Certain Universal Families of Cubic Fourfolds

被引:1
|
作者
Awada, Hanine [1 ]
Bolognesi, Michele [1 ]
机构
[1] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, CNRS, Case Courrier 051,Pl Eugene Bataillon, F-34095 Montpellier 5, France
来源
RATIONALITY OF VARIETIES | 2021年 / 342卷
关键词
Birational geometry; rationality questions; universal families; moduli spaces; cubic hypersurfaces; MODULI SPACE; RATIONALITY; CATEGORIES; SURFACES;
D O I
10.1007/978-3-030-75421-1_4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this short note is to define the universal cubic fourfold over certain loci of their moduli space. Then, we propose two methods to prove that it is unirational over the Hassett divisors C-d, in the range 8 <= d <= 42. By applying inductively this argument, we are able to show that, in the same range of values, C-d,C-n is unirational for all integer values of n. Finally, we observe that for explicit infinitely many values of d, the universal cubic fourfold over C-d can not be unirational.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 50 条