Planes in cubic fourfolds

被引:0
|
作者
Degtyarev, Alex [1 ]
Itenberg, Ilia [2 ,3 ]
Ottem, John Christian [4 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkiye
[2] Sorbonne Univ, F-75005 Paris, France
[3] Univ Paris Cite, CNRS, IMJ, PRG, F-75005 Paris, France
[4] Univ Oslo, Dept Math, Box 1053, N-0316 Oslo, Norway
来源
ALGEBRAIC GEOMETRY | 2023年 / 10卷 / 02期
关键词
cubic fourfold; integral lattice; Niemeier lattice; discriminant form; 2-planes;
D O I
10.14231/AG-2023-007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the maximal number of planes in a complex smooth cubic fourfold in P5 is 405, realized by the Fermat cubic only; the maximal number of real planes in a real smooth cubic fourfold is 357, realized by the so-called Clebsch-Segre cubic. Altogether, there are but three (up to projective equivalence) cubics with more than 350 planes.
引用
收藏
页码:228 / 258
页数:31
相关论文
共 50 条