共 50 条
Planes in cubic fourfolds
被引:0
|作者:
Degtyarev, Alex
[1
]
Itenberg, Ilia
[2
,3
]
Ottem, John Christian
[4
]
机构:
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkiye
[2] Sorbonne Univ, F-75005 Paris, France
[3] Univ Paris Cite, CNRS, IMJ, PRG, F-75005 Paris, France
[4] Univ Oslo, Dept Math, Box 1053, N-0316 Oslo, Norway
来源:
关键词:
cubic fourfold;
integral lattice;
Niemeier lattice;
discriminant form;
2-planes;
D O I:
10.14231/AG-2023-007
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We show that the maximal number of planes in a complex smooth cubic fourfold in P5 is 405, realized by the Fermat cubic only; the maximal number of real planes in a real smooth cubic fourfold is 357, realized by the so-called Clebsch-Segre cubic. Altogether, there are but three (up to projective equivalence) cubics with more than 350 planes.
引用
收藏
页码:228 / 258
页数:31
相关论文