Planes in cubic fourfolds

被引:0
|
作者
Degtyarev, Alex [1 ]
Itenberg, Ilia [2 ,3 ]
Ottem, John Christian [4 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkiye
[2] Sorbonne Univ, F-75005 Paris, France
[3] Univ Paris Cite, CNRS, IMJ, PRG, F-75005 Paris, France
[4] Univ Oslo, Dept Math, Box 1053, N-0316 Oslo, Norway
来源
ALGEBRAIC GEOMETRY | 2023年 / 10卷 / 02期
关键词
cubic fourfold; integral lattice; Niemeier lattice; discriminant form; 2-planes;
D O I
10.14231/AG-2023-007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the maximal number of planes in a complex smooth cubic fourfold in P5 is 405, realized by the Fermat cubic only; the maximal number of real planes in a real smooth cubic fourfold is 357, realized by the so-called Clebsch-Segre cubic. Altogether, there are but three (up to projective equivalence) cubics with more than 350 planes.
引用
收藏
页码:228 / 258
页数:31
相关论文
共 50 条
  • [11] THE MODULI SPACE OF CUBIC FOURFOLDS
    Laza, Radu
    JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (03) : 511 - 545
  • [12] Topology of real cubic fourfolds
    Finashin, S.
    Kharlamov, V.
    JOURNAL OF TOPOLOGY, 2010, 3 (01) : 1 - 28
  • [13] The period map for cubic fourfolds
    Looijenga, Eduard
    INVENTIONES MATHEMATICAE, 2009, 177 (01) : 213 - 233
  • [14] Twisted cubics on cubic fourfolds
    Lehn, Christian
    Lehn, Manfred
    Sorger, Christoph
    van Straten, Duco
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 731 : 87 - 128
  • [15] Automorphisms and periods of cubic fourfolds
    Laza, Radu
    Zheng, Zhiwei
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) : 1455 - 1507
  • [16] ON CUBIC FOURFOLDS WITH AN INDUCTIVE STRUCTURE
    Koike, Kenji
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (09) : 3757 - 3769
  • [17] On some invariants of cubic fourfolds
    Gounelas, Frank
    Kouvidakis, Alexis
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)
  • [18] On some invariants of cubic fourfolds
    Frank Gounelas
    Alexis Kouvidakis
    European Journal of Mathematics, 2023, 9
  • [19] Cohomology of Moduli Space of Cubic Fourfolds Ⅰ
    Fei SI
    ActaMathematicaSinica,EnglishSeries, 2023, (05) : 773 - 798
  • [20] ALGEBRAIC CYCLES OVER CUBIC FOURFOLDS
    ZARHIN, YG
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4B (04): : 833 - 847