The aim of this short note is to define the universal cubic fourfold over certain loci of their moduli space. Then, we propose two methods to prove that it is unirational over the Hassett divisors C-d, in the range 8 <= d <= 42. By applying inductively this argument, we are able to show that, in the same range of values, C-d,C-n is unirational for all integer values of n. Finally, we observe that for explicit infinitely many values of d, the universal cubic fourfold over C-d can not be unirational.
机构:
Inst Math Jussieu, 4 Pl Jussieu,Boite 247, F-75252 Paris 05, FranceInst Math Jussieu, 4 Pl Jussieu,Boite 247, F-75252 Paris 05, France
Lehn, Christian
Lehn, Manfred
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, GermanyInst Math Jussieu, 4 Pl Jussieu,Boite 247, F-75252 Paris 05, France
Lehn, Manfred
Sorger, Christoph
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nantes, Lab Math Jean Leray, 2,Rue Houssiniere,BP 92208, F-44322 Nantes 03, FranceInst Math Jussieu, 4 Pl Jussieu,Boite 247, F-75252 Paris 05, France
Sorger, Christoph
van Straten, Duco
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, GermanyInst Math Jussieu, 4 Pl Jussieu,Boite 247, F-75252 Paris 05, France
van Straten, Duco
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
2017,
731
: 87
-
128