New goodness-of-fit tests and their application to nonparametric confidence sets

被引:0
|
作者
Dümbgen, L
机构
[1] Univ Heidelberg, Inst Angew Math, D-69120 Heidelberg, Germany
[2] Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 01期
关键词
adaptivity; conditional median; convexity; distribution-free; interval censoring; modality; monotonicity; signs of residuals; spacings;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose one observes a process V on the unit interval, where dV = f(o)+ dW with an unknown parameter f(o) epsilon L-1[0, 1] and standard Brownian motion W. We propose a particular test of one-point hypotheses about f(o) which is based on suitably standardized increments of V. This test is shown to have desirable consistency properties if, for instance, f(o) is restricted to various Holder classes of functions. The test is mimicked in the context of nonparametric density estimation, nonparametric regression and interval-censored data. Under shape restrictions on the parameter, such as monotonicity or convexity, we obtain confidence sets for f(o) adapting to its unknown smoothness.
引用
收藏
页码:288 / 314
页数:27
相关论文
共 50 条
  • [31] IMPROVED GOODNESS-OF-FIT TESTS
    FINKELSTEIN, JM
    SCHAFER, RE
    BIOMETRIKA, 1971, 58 (03) : 641 - +
  • [32] Goodness-of-fit tests for copulas
    Fermanian, JD
    JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (01) : 119 - 152
  • [33] GOODNESS-OF-FIT TESTS ON A CIRCLE
    WATSON, GS
    BIOMETRIKA, 1961, 48 (1-2) : 109 - &
  • [34] New goodness-of-fit tests based on sample quantiles
    Esteban, M. D.
    Marhuenda, Y.
    Morales, D.
    Sanchez, A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2007, 36 (03) : 631 - 642
  • [35] Some New Goodness-of-fit Tests for Rayleigh Distribution
    Jahanshahi, S. M. A.
    Habibirad, A.
    Fakoor, V
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (02) : 305 - 315
  • [36] Binning methodology for nonparametric goodness-of-fit test
    Zhang, CM
    Cheng, B
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (01) : 71 - 82
  • [37] Bias of Nonparametric Goodness-of-Fit Tests Relative to Certain Pairs of Competing Hypotheses
    B. Yu. Lemeshko
    P. Yu. Blinov
    S. B. Lemeshko
    Measurement Techniques, 2016, 59 : 468 - 475
  • [38] Bias of Nonparametric Goodness-of-Fit Tests Relative to Certain Pairs of Competing Hypotheses
    Lemeshko, B. Yu.
    Blinov, P. Yu.
    Lemeshko, S. B.
    MEASUREMENT TECHNIQUES, 2016, 59 (05) : 468 - 475
  • [39] Goodness-of-Fit Methods for Nonparametric IRT Models
    Sijtsma, Klaas
    Straat, J. Hendrik
    van der Ark, L. Andries
    QUANTITATIVE PSYCHOLOGY RESEARCH, 2015, 140 : 109 - 120
  • [40] Curve registration by nonparametric goodness-of-fit testing
    Collier, Olivier
    Dalalyan, Arnak S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 162 : 20 - 42