New goodness-of-fit tests and their application to nonparametric confidence sets

被引:0
|
作者
Dümbgen, L
机构
[1] Univ Heidelberg, Inst Angew Math, D-69120 Heidelberg, Germany
[2] Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 01期
关键词
adaptivity; conditional median; convexity; distribution-free; interval censoring; modality; monotonicity; signs of residuals; spacings;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose one observes a process V on the unit interval, where dV = f(o)+ dW with an unknown parameter f(o) epsilon L-1[0, 1] and standard Brownian motion W. We propose a particular test of one-point hypotheses about f(o) which is based on suitably standardized increments of V. This test is shown to have desirable consistency properties if, for instance, f(o) is restricted to various Holder classes of functions. The test is mimicked in the context of nonparametric density estimation, nonparametric regression and interval-censored data. Under shape restrictions on the parameter, such as monotonicity or convexity, we obtain confidence sets for f(o) adapting to its unknown smoothness.
引用
收藏
页码:288 / 314
页数:27
相关论文
共 50 条
  • [11] Nonparametric Goodness-of-Fit Tests for Discrete Null Distributions
    Arnold, Taylor B.
    Emerson, John W.
    R JOURNAL, 2011, 3 (02): : 34 - 39
  • [12] NONPARAMETRIC GOODNESS-OF-FIT TESTS FOR UNIFORM STOCHASTIC ORDERING
    Tang, Chuan-Fa
    Wang, Dewei
    Tebbs, Joshua M.
    ANNALS OF STATISTICS, 2017, 45 (06): : 2565 - 2589
  • [13] Exact confidence sets and goodness-of-fit methods for stable distributions
    Beaulieu, Marie-Claude
    Dufour, Jean-Marie
    Khalaf, Lynda
    JOURNAL OF ECONOMETRICS, 2014, 181 (01) : 3 - 14
  • [14] Nonparametric goodness-of-fit tests when checking composite hypotheses
    Lemeshko, BY
    Postovalov, SN
    KORUS '99: THIRD RUSSIAN-KOREAN INTERNATIONAL SYMPOSIUM ON SCIENCE AND TECHNOLOGY, VOLS 1 AND 2, 1999, : 501 - 504
  • [15] NONPARAMETRIC-TESTS OF REGULARITY, FARRELL EFFICIENCY, AND GOODNESS-OF-FIT
    FARE, R
    GROSSKOPF, S
    JOURNAL OF ECONOMETRICS, 1995, 69 (02) : 415 - 425
  • [16] Nonparametric likelihood ratio goodness-of-fit tests for survival data
    Li, G
    JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 86 (01) : 166 - 182
  • [17] Solving problems of using some nonparametric goodness-of-fit tests
    Lemeshko B.Y.
    Gorbunova A.A.
    Lemeshko S.B.
    Rogozhnikov A.P.
    Optoelectronics, Instrumentation and Data Processing, 2014, 50 (1) : 21 - 35
  • [18] NEW GOODNESS-OF-FIT TESTS FOR PARETO DISTRIBUTIONS
    Rizzo, Maria L.
    ASTIN BULLETIN, 2009, 39 (02): : 691 - 715
  • [19] New Goodness-of-Fit Tests for the Kumaraswamy Distribution
    Giles, David E.
    STATS, 2024, 7 (02): : 373 - 388
  • [20] Minimax nonparametric goodness-of-fit testing
    Ingster, YI
    Suslina, IA
    FOUNDATIONS OF STATISTICAL INFERENCE, 2003, : 141 - 152