New goodness-of-fit tests and their application to nonparametric confidence sets

被引:0
|
作者
Dümbgen, L
机构
[1] Univ Heidelberg, Inst Angew Math, D-69120 Heidelberg, Germany
[2] Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 01期
关键词
adaptivity; conditional median; convexity; distribution-free; interval censoring; modality; monotonicity; signs of residuals; spacings;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose one observes a process V on the unit interval, where dV = f(o)+ dW with an unknown parameter f(o) epsilon L-1[0, 1] and standard Brownian motion W. We propose a particular test of one-point hypotheses about f(o) which is based on suitably standardized increments of V. This test is shown to have desirable consistency properties if, for instance, f(o) is restricted to various Holder classes of functions. The test is mimicked in the context of nonparametric density estimation, nonparametric regression and interval-censored data. Under shape restrictions on the parameter, such as monotonicity or convexity, we obtain confidence sets for f(o) adapting to its unknown smoothness.
引用
收藏
页码:288 / 314
页数:27
相关论文
共 50 条
  • [21] A guided nonparametric goodness-of-fit test with application to income distributions
    Wen, Kuangyu
    Wu, Ximing
    ECONOMETRICS JOURNAL, 2019, 22 (03): : 207 - 222
  • [22] Goodness-of-fit tests based on series estimators in nonparametric instrumental regression
    Breunig, Christoph
    JOURNAL OF ECONOMETRICS, 2015, 184 (02) : 328 - 346
  • [23] COMPUTATIONALLY EFFICIENT GOODNESS-OF-FIT TESTS FOR THE ERROR DISTRIBUTION IN NONPARAMETRIC REGRESSION
    Rivas-Martinez, G. I.
    Jimenez-Gamero, M. D.
    REVSTAT-STATISTICAL JOURNAL, 2018, 16 (01) : 137 - 166
  • [24] Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis
    Reynaud-Bouret, Patricia
    Rivoirard, Vincent
    Grammont, Franck
    Tuleau-Malot, Christine
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2014, 4 : 1 - 41
  • [25] An Empirical Analysis of Some Nonparametric Goodness-of-Fit Tests for Censored Data
    Balakrishnan, N.
    Chimitova, E.
    Vedernikova, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (04) : 1101 - 1115
  • [26] Frequentist nonparametric goodness-of-fit tests via marginal likelihood ratios
    Hart, Jeffrey D.
    Choi, Taeryon
    Yi, Seongbaek
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 120 - 132
  • [27] Tuning goodness-of-fit tests
    Arrasmith, A.
    Follin, B.
    Anderes, E.
    Knox, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (02) : 1889 - 1898
  • [28] Goodness-of-Fit Tests on Manifolds
    Shapiro, Alexander
    Xie, Yao
    Zhang, Rui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (04) : 2539 - 2553
  • [29] MULTINOMIAL GOODNESS-OF-FIT TESTS
    CRESSIE, N
    READ, TRC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1984, 46 (03): : 440 - 464
  • [30] MULTIVARIATE GOODNESS-OF-FIT TESTS
    ROSENBLATT, J
    ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02): : 807 - &