Data analysis tools for uncertainty quantification of inverse problems

被引:21
|
作者
Tenorio, L. [1 ]
Andersson, F. [2 ]
de Hoop, M. [3 ]
Ma, P. [4 ]
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[2] Lund Univ, Ctr Math Sci, Lund, Sweden
[3] Purdue Univ, Ctr Computat & Appl Math, W Lafayette, IN 47907 USA
[4] Univ Illinois, Dept Stat, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
REGULARIZATION; VARIANCE; ESTIMATORS; MATRIX; SCALE;
D O I
10.1088/0266-5611/27/4/045001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present exploratory data analysis methods to assess inversion estimates using examples based on l(2)- and l(1)-regularization. These methods can be used to reveal the presence of systematic errors such as bias and discretization effects, or to validate assumptions made on the statistical model used in the analysis. The methods include bounds on the performance of randomized estimators of a large matrix, confidence intervals and bounds for the bias, resampling methods for model validation and construction of training sets of functions with controlled local regularity.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Bayesian analysis for uncertainty quantification of in situ stress data
    Feng, Yu
    Bozorgzadeh, Nezam
    Harrison, John P.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2020, 134
  • [42] Analysis of sources and quantification of uncertainty in experimental modal data
    Govers, Y.
    Boebswald, M.
    Fuellekrugn, U.
    Goege, D.
    Link, M.
    Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8, 2006, : 4161 - 4173
  • [43] Wavelet analysis of the field data for inverse problems
    Marinova, I
    Saito, Y
    NON-LINEAR ELECTROMAGNETIC SYSTEMS: ADVANCED TECHNIQUES AND MATHEMATICAL METHODS, 1998, 13 : 377 - 380
  • [44] Distribution-free uncertainty quantification for inverse problems: Application to weak lensing mass mapping
    Leterme, H.
    Fadili, J.
    Starck, J. -L
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [45] Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping
    Banks, H. T.
    Holm, Kathleen
    Robbins, Danielle
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1610 - 1625
  • [46] Inverse uncertainty quantification of trace physical model parameters using BFBT benchmark data
    Hu, Guojun
    Kozlowski, Tomasz
    ANNALS OF NUCLEAR ENERGY, 2016, 96 : 197 - 203
  • [47] Non-linear model reduction for uncertainty quantification in large-scale inverse problems
    Galbally, D.
    Fidkowski, K.
    Willcox, K.
    Ghattas, O.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (12) : 1581 - 1608
  • [48] Prior information and uncertainty in inverse problems
    Scales, JA
    Tenorio, L
    GEOPHYSICS, 2001, 66 (02) : 389 - 397
  • [49] Bayesian Inference Tools for Inverse Problems
    Mohammad-Djafari, Ali
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2013, 1553 : 163 - 170
  • [50] Bayesian Multilevel Model Calibration for Inverse Problems Under Uncertainty with Perfect Data
    Nagel, Joseph B.
    Sudret, Bruno
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2015, 12 (01): : 97 - 113