Data analysis tools for uncertainty quantification of inverse problems

被引:21
|
作者
Tenorio, L. [1 ]
Andersson, F. [2 ]
de Hoop, M. [3 ]
Ma, P. [4 ]
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[2] Lund Univ, Ctr Math Sci, Lund, Sweden
[3] Purdue Univ, Ctr Computat & Appl Math, W Lafayette, IN 47907 USA
[4] Univ Illinois, Dept Stat, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
REGULARIZATION; VARIANCE; ESTIMATORS; MATRIX; SCALE;
D O I
10.1088/0266-5611/27/4/045001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present exploratory data analysis methods to assess inversion estimates using examples based on l(2)- and l(1)-regularization. These methods can be used to reveal the presence of systematic errors such as bias and discretization effects, or to validate assumptions made on the statistical model used in the analysis. The methods include bounds on the performance of randomized estimators of a large matrix, confidence intervals and bounds for the bias, resampling methods for model validation and construction of training sets of functions with controlled local regularity.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A PROBABILISTIC ORACLE INEQUALITY AND QUANTIFICATION OF UNCERTAINTY OF A MODIFIED DISCREPANCY PRINCIPLE FOR STATISTICAL INVERSE PROBLEMS
    Jahn, Tim
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 57 : 35 - 56
  • [32] STATISTICAL GUARANTEES FOR BAYESIAN UNCERTAINTY QUANTIFICATION IN NONLINEAR INVERSE PROBLEMS WITH GAUSSIAN PROCESS PRIORS
    Monard, Francois
    Nickl, Richard
    Paternain, Gabriel P.
    ANNALS OF STATISTICS, 2021, 49 (06): : 3255 - 3298
  • [33] Efficient Krylov subspace methods for uncertainty quantification in large Bayesian linear inverse problems
    Saibaba, Arvind K.
    Chung, Julianne
    Petroske, Katrina
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (05)
  • [34] Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics
    Alan Lazarus
    David Dalton
    Dirk Husmeier
    Hao Gao
    Biomechanics and Modeling in Mechanobiology, 2022, 21 : 953 - 982
  • [35] Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics
    Lazarus, Alan
    Dalton, David
    Husmeier, Dirk
    Gao, Hao
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2022, 21 (03) : 953 - 982
  • [36] On uncertainty quantification in vibroacoustic problems
    Sepahvand, K.
    Marburg, S.
    EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, 2014, : 3259 - 3263
  • [37] Parametric Uncertainty Analysis of Inverse Linear Electric Circuit Problems
    Borquez, Javier
    Ferber, Moises
    Barbosa, Karina A.
    2017 CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON), 2017,
  • [38] Tikhonov regularization as a nonparametric method for uncertainty quantification in aggregate data problems
    Villalon, Elena
    Yang, Qian
    Long, Carlos A. Sing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 513
  • [39] Nuclear data uncertainty quantification analysis at Studsvik Scandpower
    Hykes, J.
    Simeonov, T.
    Ferrer, R.
    Jonsson, C.
    Wemple, C.
    Eronen, V. -p.
    Ranta, T.
    Ranta-aho, A.
    Hynonen, V.
    Kumpula, J.
    Huttunen, J.
    ANNALS OF NUCLEAR ENERGY, 2024, 208
  • [40] Reliability analysis of automotive systems: Quantification of data uncertainty
    Woltereck, MM
    Vollmar, R
    PROBABILISTIC SAFETY ASSESSMENT AND MANAGEMENT, VOL 1- 6, 2004, : 2517 - 2523