Data analysis tools for uncertainty quantification of inverse problems

被引:21
|
作者
Tenorio, L. [1 ]
Andersson, F. [2 ]
de Hoop, M. [3 ]
Ma, P. [4 ]
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[2] Lund Univ, Ctr Math Sci, Lund, Sweden
[3] Purdue Univ, Ctr Computat & Appl Math, W Lafayette, IN 47907 USA
[4] Univ Illinois, Dept Stat, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
REGULARIZATION; VARIANCE; ESTIMATORS; MATRIX; SCALE;
D O I
10.1088/0266-5611/27/4/045001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present exploratory data analysis methods to assess inversion estimates using examples based on l(2)- and l(1)-regularization. These methods can be used to reveal the presence of systematic errors such as bias and discretization effects, or to validate assumptions made on the statistical model used in the analysis. The methods include bounds on the performance of randomized estimators of a large matrix, confidence intervals and bounds for the bias, resampling methods for model validation and construction of training sets of functions with controlled local regularity.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Statistical Considerations in Data Analysis and Quantification of Uncertainty
    Fuentes, C.
    BIRTH DEFECTS RESEARCH, 2022, 114 (09): : 363 - 363
  • [22] Online Tools for Uncertainty Quantification in nanoHUB
    Desai, Saaketh
    Hunt, Martin
    Strachan, Alejandro
    JOM, 2019, 71 (08) : 2635 - 2645
  • [23] Online Tools for Uncertainty Quantification in nanoHUB
    Saaketh Desai
    Martin Hunt
    Alejandro Strachan
    JOM, 2019, 71 : 2635 - 2645
  • [24] Incorporation of uncertainty in inverse problems
    Banks, HT
    RECENT DEVELOPMENT IN THEORIES & NUMERICS, 2003, : 26 - 36
  • [25] Scaling Up Bayesian Uncertainty Quantification for Inverse Problems Using Deep Neural Networks
    Lan, Shiwei
    Li, Shuyi
    Shahbaba, Babak
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04): : 1684 - 1713
  • [26] LP CONVERGENCE OF APPROXIMATE MAPS AND PROBABILITY DENSITIES FOR FORWARD AND INVERSE PROBLEMS IN UNCERTAINTY QUANTIFICATION
    Butler, T.
    Wildey, T.
    Zhang, W.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (04) : 65 - 92
  • [27] Uncertainty Quantification of Microstructures: A Perspective on Forward and Inverse Problems for Mechanical Properties of Aerospace Materials
    Billah, Md Maruf
    Elleithy, Mohamed
    Khan, Waris
    Yildiz, Saltuk
    Eger, Zekeriya Ender
    Liu, Sheng
    Long, Matthew
    Acar, Pinar
    ADVANCED ENGINEERING MATERIALS, 2025, 27 (02)
  • [28] CONVERGENCE OF PROBABILITY DENSITIES USING APPROXIMATE MODELS FOR FORWARD AND INVERSE PROBLEMS IN UNCERTAINTY QUANTIFICATION
    Butler, T.
    Jakeman, J.
    Wildey, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A3523 - A3548
  • [29] Cycle-Consistency-Based Uncertainty Quantification of Neural Networks in Inverse Imaging Problems
    Huang, Luzhe
    Li, Jianing
    Ding, Xiaofu
    Zhang, Yijie
    Chen, Hanlong
    Ozcan, Aydogan
    Intelligent Computing, 2023, 2
  • [30] Application of Markov Chain Monte Carlo Methods for Uncertainty Quantification in Inverse Transport Problems
    Bledsoe, Keith C.
    Hite, Jason
    Jessee, Matthew A.
    Lefebvre, Jordan P.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) : 2210 - 2219