FINITE ELEMENT APPROXIMATION OF A TIME-FRACTIONAL DIFFUSION PROBLEM FOR A DOMAIN WITH A RE-ENTRANT CORNER

被引:7
|
作者
Le, Kim Ngan [1 ]
Mclean, William [1 ]
Lamichhane, Bishnu [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
来源
ANZIAM JOURNAL | 2017年 / 59卷 / 01期
关键词
local mesh refinement; non-smooth initial data; Laplace transformation; EQUATIONS;
D O I
10.1017/S1446181116000365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a time-fractional diffusion equation is discretized in space, using continuous piecewise-linear finite elements on a domain with a re-entrant corner. Known error bounds for the case of a convex domain break down, because the associated Poisson equation is no longer H-2-regular. In particular, the method is no longer second-order accurate if quasi-uniform triangulations are used. We prove that a suitable local mesh refinement about the re-entrant corner restores second-order convergence. In this way, we generalize known results for the classical heat equation.
引用
收藏
页码:61 / 82
页数:22
相关论文
共 50 条
  • [21] A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 15 - 29
  • [22] The backward problem for a time-fractional diffusion-wave equation in a bounded domain
    Wei, Ting
    Zhang, Yun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (10) : 3632 - 3648
  • [23] A two-grid finite element approximation for a nonlinear time-fractional Cable equation
    Yang Liu
    Yan-Wei Du
    Hong Li
    Jin-Feng Wang
    Nonlinear Dynamics, 2016, 85 : 2535 - 2548
  • [24] An α-robust finite difference method for a time-fractional radially symmetric diffusion problem
    Wang, Lin
    Stynes, Martin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 97 : 386 - 393
  • [25] A two-grid finite element approximation for a nonlinear time-fractional Cable equation
    Liu, Yang
    Du, Yan-Wei
    Li, Hong
    Wang, Jin-Feng
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2535 - 2548
  • [26] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [27] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788
  • [28] Finite Element Approximation for the Fractional Eigenvalue Problem
    Juan Pablo Borthagaray
    Leandro M. Del Pezzo
    Sandra Martínez
    Journal of Scientific Computing, 2018, 77 : 308 - 329
  • [29] Finite Element Approximation for the Fractional Eigenvalue Problem
    Pablo Borthagaray, Juan
    Del Pezzo, Leandro M.
    Martinez, Sandra
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 308 - 329
  • [30] A semi-discrete finite element method for a class of time-fractional diffusion equations
    Sun, HongGuang
    Chen, Wen
    Sze, K. Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990):