FINITE ELEMENT APPROXIMATION OF A TIME-FRACTIONAL DIFFUSION PROBLEM FOR A DOMAIN WITH A RE-ENTRANT CORNER

被引:7
|
作者
Le, Kim Ngan [1 ]
Mclean, William [1 ]
Lamichhane, Bishnu [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
来源
ANZIAM JOURNAL | 2017年 / 59卷 / 01期
关键词
local mesh refinement; non-smooth initial data; Laplace transformation; EQUATIONS;
D O I
10.1017/S1446181116000365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a time-fractional diffusion equation is discretized in space, using continuous piecewise-linear finite elements on a domain with a re-entrant corner. Known error bounds for the case of a convex domain break down, because the associated Poisson equation is no longer H-2-regular. In particular, the method is no longer second-order accurate if quasi-uniform triangulations are used. We prove that a suitable local mesh refinement about the re-entrant corner restores second-order convergence. In this way, we generalize known results for the classical heat equation.
引用
收藏
页码:61 / 82
页数:22
相关论文
共 50 条
  • [41] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [42] Cylindrical re-entrant cavity resonator design using finite-element simulation
    Kelly, MB
    Sangster, AJ
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1998, 18 (02) : 112 - 117
  • [43] Cylindrical re-entrant cavity resonator design using finite-element simulation
    Heriot-Watt Univ, Edinburgh, United Kingdom
    Microwave Opt Technol Lett, 2 (112-117):
  • [44] ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION
    Liu, Huan
    Null, Xiangcheng Zheng
    Fu, Hongfei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (05): : 818 - 838
  • [45] Finite Element Analyzing of the Effect of Crack on Mechanical Behavior of Honeycomb and Re-entrant Structures
    Ergene, Berkay
    Yalcin, Bekir
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2020, 23 (04): : 1015 - 1025
  • [46] An inverse problem for homogeneous time-fractional diffusion problem on the sphere
    Danh Hua Quoc Nam
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 653 - 662
  • [47] Lowest-order nonstandard finite element methods for time-fractional biharmonic problem
    Mahata, Shantiram
    Nataraj, Neela
    Raymond, Jean-Pierre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 43 - 71
  • [48] A Mixed Finite Volume Element Method for Time-Fractional Damping Beam Vibration Problem
    Wang, Tongxin
    Jiang, Ziwen
    Zhu, Ailing
    Yin, Zhe
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [49] Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term
    Liu, Nan
    Liu, Yang
    Li, Hong
    Wang, Jinfeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (10) : 3521 - 3536
  • [50] On a boundary-value problem in a bounded domain for a time-fractional diffusion equation with the Prabhakar fractional derivative
    Karimov, E. T.
    Hasanov, A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 111 (03): : 39 - 46