Symbolic Dynamics: Entropy = Dimension = Complexity

被引:14
|
作者
Simpson, Stephen G. [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Symbolic dynamics; Entropy; Hausdorff dimension; Kolmogorov complexity;
D O I
10.1007/s00224-014-9546-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let d be a positive integer. Let G be the additive monoid a"center dot (d) or the additive group a"currency sign (d) . Let A be a finite set of symbols. The shift action of G on A (G) is given by S (g) (x)(h) = x(g+h) for all g, h a G and all x a A (G) . A G-subshift is defined to be a nonempty closed set X aS dagger A (G) such that S (g) (x)aX for all g a G and all x a X. Given a G-subshift X, the topological entropy ent(X) is defined as usual (Ruelle Trans. Am. Math. Soc. 187, 237-251, 1973). The standard metric on A (G) is defined by rho(x, y) = where n is as large as possible such that xa dagger 3/4F (n) = ya dagger 3/4F (n) . Here F (n) = {0, 1, aEuro broken vertical bar , n} (d) if G = a"center dot (d) , and F (n) = {-n, aEuro broken vertical bar , -1, 0, 1, aEuro broken vertical bar , n} (d) if G = a"currency sign (d) . For any X aS dagger A (G) the Hausdorff dimension dim(X) and the effective Hausdorff dimension effdim(X) are defined as usual (Hausdorff Math. Ann. 79, 157-179 1919; Reimann 2004; Reimann and Stephan 2005) with respect to the standard metric. It is well known that effdim(X) = sup (xaX) lim inf (n) K(xa dagger 3/4F (n) )/|F (n) | where K denotes Kolmogorov complexity (Downey and Hirschfeldt 2010). If X is a G-subshift, we prove that ent(X) = dim(X) = effdim(X), and ent(X) a parts per thousand yen limsup (n) K(xa dagger 3/4F (n) )/|F (n) | for all x a X, and ent(X) = lim (n) K(xa dagger 3/4F (n) )/|F (n) | for some x is an element of X.
引用
收藏
页码:527 / 543
页数:17
相关论文
共 50 条
  • [1] Symbolic Dynamics: Entropy = Dimension = Complexity
    Stephen G. Simpson
    Theory of Computing Systems, 2015, 56 : 527 - 543
  • [2] Symbolic Dynamics, Entropy and Complexity of the Feigenbaum Map at the Accumulation Point
    Ebeling, Werner
    Rateitschak, Katja
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 1998, 2 (03)
  • [3] Effective symbolic dynamics, random points, statistical behavior, complexity and entropy
    Galatolo, Stefano
    Hoyrup, Mathieu
    Rojas, Cristobal
    INFORMATION AND COMPUTATION, 2010, 208 (01) : 23 - 41
  • [4] Recent Progress in Symbolic Dynamics and Permutation Complexity Ten Years of Permutation Entropy
    Amigo, Jose M.
    Keller, Karsten
    Kurths, Juergen
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (02): : 241 - 247
  • [5] Temporal Analysis of Cardiovascular and Respiratory Complexity by Multiscale Entropy Based on Symbolic Dynamics
    Reulecke, Sina
    Charleston-Villalobos, Sonia
    Voss, Andreas
    Gonzalez-Camarena, Ramon
    Gonzalez-Hermosillo, Jestis A.
    Gaitan-Gonzalez, Mercedes J.
    Hernandez-Pacheco, Guadalupe
    Schroeder, Rico
    Aljama-Corrales, Tomas
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (04) : 1046 - 1058
  • [6] SYMBOLIC DYNAMICS AND CHARACTERIZATION OF COMPLEXITY
    HAO, BL
    PHYSICA D, 1991, 51 (1-3): : 161 - 176
  • [7] Symbolic dynamics in mean dimension theory
    Shinoda, Mao
    Tsukamoto, Masaki
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (08) : 2542 - 2560
  • [8] Dimension and measure theoretic entropy of a subshift in symbolic space
    CHEN Ercai and XIONG Jincheng1. Department of Astronomy
    2. Department of Mathematics
    ChineseScienceBulletin, 1997, (14) : 1193 - 1196
  • [9] Dimension and measure theoretic entropy of a subshift in symbolic space
    Chen, EC
    Xiong, JC
    CHINESE SCIENCE BULLETIN, 1997, 42 (14): : 1193 - 1196
  • [10] Entropy for Symbolic Dynamics with Overlapping Alphabets
    Fabio Drucker
    David Richeson
    Jim Wiseman
    Journal of Dynamics and Differential Equations, 2016, 28 : 301 - 315