Effective symbolic dynamics, random points, statistical behavior, complexity and entropy

被引:18
|
作者
Galatolo, Stefano [2 ]
Hoyrup, Mathieu [1 ]
Rojas, Cristobal [1 ,3 ]
机构
[1] Ecole Normale Super, Dept Informat, F-75231 Paris, France
[2] Univ Pisa, Dipartimento Matemat Applicata, Paris, France
[3] Ecole Polytech, CREA, F-75230 Paris, France
关键词
Algorithmic randomness; Kolmogorov-Chaitin complexity; Computable partition; Effective symbolic dynamics; Entropy; Orbit complexity; COMPUTABILITY;
D O I
10.1016/j.ic.2009.05.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the dynamical behavior of Martin-Lof random points in dynamical systems over metric spaces with a computable dynamics and a computable invariant measure. We use computable partitions to de. ne a sort of effective symbolic model for the dynamics. Through this construction, we prove that such points have typical statistical behavior (the behavior which is typical in the Birkhoff ergodic theorem) and are recurrent. We introduce and compare some notions of complexity for orbits in dynamical systems and prove: (i) that the complexity of the orbits of random points equals the Kolmogorov-Sina entropy of the system, (ii) that the supremum of the complexity of orbits equals the topological entropy. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 50 条
  • [1] Symbolic Dynamics: Entropy = Dimension = Complexity
    Simpson, Stephen G.
    THEORY OF COMPUTING SYSTEMS, 2015, 56 (03) : 527 - 543
  • [2] Symbolic Dynamics: Entropy = Dimension = Complexity
    Stephen G. Simpson
    Theory of Computing Systems, 2015, 56 : 527 - 543
  • [3] Fuzzy entropy complexity and multifractal behavior of statistical physics financial dynamics
    Wang, Yiduan
    Zheng, Shenzhou
    Zhang, Wei
    Wang, Guochao
    Wang, Jun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 506 : 486 - 498
  • [4] Symbolic Dynamics, Entropy and Complexity of the Feigenbaum Map at the Accumulation Point
    Ebeling, Werner
    Rateitschak, Katja
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 1998, 2 (03)
  • [5] Recent Progress in Symbolic Dynamics and Permutation Complexity Ten Years of Permutation Entropy
    Amigo, Jose M.
    Keller, Karsten
    Kurths, Juergen
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (02): : 241 - 247
  • [6] Temporal Analysis of Cardiovascular and Respiratory Complexity by Multiscale Entropy Based on Symbolic Dynamics
    Reulecke, Sina
    Charleston-Villalobos, Sonia
    Voss, Andreas
    Gonzalez-Camarena, Ramon
    Gonzalez-Hermosillo, Jestis A.
    Gaitan-Gonzalez, Mercedes J.
    Hernandez-Pacheco, Guadalupe
    Schroeder, Rico
    Aljama-Corrales, Tomas
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (04) : 1046 - 1058
  • [7] A symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences
    Xiao, FH
    Yan, GR
    Han, YH
    ACTA PHYSICA SINICA, 2004, 53 (09) : 2877 - 2881
  • [8] SYMBOLIC DYNAMICS AND CHARACTERIZATION OF COMPLEXITY
    HAO, BL
    PHYSICA D, 1991, 51 (1-3): : 161 - 176
  • [9] Effective Symbolic Dynamics
    Cenzer, Douglas
    Ali Dashti, S.
    King, Jonathan L.F.
    Electronic Notes in Theoretical Computer Science, 2008, 202 (0C) : 89 - 99
  • [10] Statistical Tests of Symbolic Dynamics
    Lopez, Fernando
    Matilla-Garcia, Mariano
    Mur, Jesus
    Ruiz Marin, Manuel
    MATHEMATICS, 2021, 9 (08)