Symbolic Dynamics: Entropy = Dimension = Complexity

被引:14
|
作者
Simpson, Stephen G. [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Symbolic dynamics; Entropy; Hausdorff dimension; Kolmogorov complexity;
D O I
10.1007/s00224-014-9546-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let d be a positive integer. Let G be the additive monoid a"center dot (d) or the additive group a"currency sign (d) . Let A be a finite set of symbols. The shift action of G on A (G) is given by S (g) (x)(h) = x(g+h) for all g, h a G and all x a A (G) . A G-subshift is defined to be a nonempty closed set X aS dagger A (G) such that S (g) (x)aX for all g a G and all x a X. Given a G-subshift X, the topological entropy ent(X) is defined as usual (Ruelle Trans. Am. Math. Soc. 187, 237-251, 1973). The standard metric on A (G) is defined by rho(x, y) = where n is as large as possible such that xa dagger 3/4F (n) = ya dagger 3/4F (n) . Here F (n) = {0, 1, aEuro broken vertical bar , n} (d) if G = a"center dot (d) , and F (n) = {-n, aEuro broken vertical bar , -1, 0, 1, aEuro broken vertical bar , n} (d) if G = a"currency sign (d) . For any X aS dagger A (G) the Hausdorff dimension dim(X) and the effective Hausdorff dimension effdim(X) are defined as usual (Hausdorff Math. Ann. 79, 157-179 1919; Reimann 2004; Reimann and Stephan 2005) with respect to the standard metric. It is well known that effdim(X) = sup (xaX) lim inf (n) K(xa dagger 3/4F (n) )/|F (n) | where K denotes Kolmogorov complexity (Downey and Hirschfeldt 2010). If X is a G-subshift, we prove that ent(X) = dim(X) = effdim(X), and ent(X) a parts per thousand yen limsup (n) K(xa dagger 3/4F (n) )/|F (n) | for all x a X, and ent(X) = lim (n) K(xa dagger 3/4F (n) )/|F (n) | for some x is an element of X.
引用
收藏
页码:527 / 543
页数:17
相关论文
共 50 条
  • [41] Complexity of bio-computation: Symbolic dynamics in membrane systems
    Muskulus, M
    Brijder, R
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (01) : 147 - 165
  • [42] Different approaches of symbolic dynamics to quantify heart rate complexity
    Cysarz, Dirk
    Porta, Alberto
    Montano, Nicola
    Van Leeuwen, Peter
    Kurths, Juergen
    Wessel, Niels
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 5041 - 5044
  • [43] SYMBOLIC DYNAMICS, MIXING AND ENTROPY IN THE THREE-BODY PROBLEM
    Myllari, A.
    Orlov, V.
    Chernin, A.
    Martynova, A.
    Myllari, T.
    BALTIC ASTRONOMY, 2016, 25 (03) : 254 - 260
  • [44] The complexity of gene expression dynamics revealed by permutation entropy
    Sun, Xiaoliang
    Zou, Yong
    Nikiforova, Victoria
    Kurths, Juergen
    Walther, Dirk
    BMC BIOINFORMATICS, 2010, 11
  • [45] On the complexity of economic dynamics: An approach through topological entropy
    Canovas, J. S.
    Munoz-Guillermo, M.
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 163 - 176
  • [46] The complexity of gene expression dynamics revealed by permutation entropy
    Xiaoliang Sun
    Yong Zou
    Victoria Nikiforova
    Jürgen Kurths
    Dirk Walther
    BMC Bioinformatics, 11
  • [47] MEAN DIMENSION THEORY IN SYMBOLIC DYNAMICS FOR FINITELY GENERATED AMENABLE GROUPS
    Wang, Yunping
    Chen, Ercai
    Zhou, Xiaoyao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4219 - 4236
  • [48] Lefort and the Symbolic Dimension
    Breckman, Warren
    CONSTELLATIONS-AN INTERNATIONAL JOURNAL OF CRITICAL AND DEMOCRATIC THEORY, 2012, 19 (01): : 30 - 36
  • [49] The symbolic dimension of agroecology
    Leon-Sicard, Tomas
    REVISTA DE LA FACULTAD DE CIENCIAS AGRARIAS, 2019, 51 (01) : 395 - 400
  • [50] Aging reduces complexity of heart rate variability assessed by conditional entropy and symbolic analysis
    Anielle C. M. Takahashi
    Alberto Porta
    Ruth C. Melo
    Robison J. Quitério
    Ester da Silva
    Audrey Borghi-Silva
    Eleonora Tobaldini
    Nicola Montano
    Aparecida M. Catai
    Internal and Emergency Medicine, 2012, 7 : 229 - 235