Symbolic Dynamics: Entropy = Dimension = Complexity

被引:14
|
作者
Simpson, Stephen G. [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Symbolic dynamics; Entropy; Hausdorff dimension; Kolmogorov complexity;
D O I
10.1007/s00224-014-9546-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let d be a positive integer. Let G be the additive monoid a"center dot (d) or the additive group a"currency sign (d) . Let A be a finite set of symbols. The shift action of G on A (G) is given by S (g) (x)(h) = x(g+h) for all g, h a G and all x a A (G) . A G-subshift is defined to be a nonempty closed set X aS dagger A (G) such that S (g) (x)aX for all g a G and all x a X. Given a G-subshift X, the topological entropy ent(X) is defined as usual (Ruelle Trans. Am. Math. Soc. 187, 237-251, 1973). The standard metric on A (G) is defined by rho(x, y) = where n is as large as possible such that xa dagger 3/4F (n) = ya dagger 3/4F (n) . Here F (n) = {0, 1, aEuro broken vertical bar , n} (d) if G = a"center dot (d) , and F (n) = {-n, aEuro broken vertical bar , -1, 0, 1, aEuro broken vertical bar , n} (d) if G = a"currency sign (d) . For any X aS dagger A (G) the Hausdorff dimension dim(X) and the effective Hausdorff dimension effdim(X) are defined as usual (Hausdorff Math. Ann. 79, 157-179 1919; Reimann 2004; Reimann and Stephan 2005) with respect to the standard metric. It is well known that effdim(X) = sup (xaX) lim inf (n) K(xa dagger 3/4F (n) )/|F (n) | where K denotes Kolmogorov complexity (Downey and Hirschfeldt 2010). If X is a G-subshift, we prove that ent(X) = dim(X) = effdim(X), and ent(X) a parts per thousand yen limsup (n) K(xa dagger 3/4F (n) )/|F (n) | for all x a X, and ent(X) = lim (n) K(xa dagger 3/4F (n) )/|F (n) | for some x is an element of X.
引用
收藏
页码:527 / 543
页数:17
相关论文
共 50 条
  • [21] Entropy for the Complexity of Physiological Signal Dynamics
    Zhang, Xiaohua Douglas
    HEALTHCARE AND BIG DATA MANAGEMENT, 2017, 1028 : 39 - 53
  • [22] The Hausdorff Dimension of the Support of the Erdos Measure and Symbolic Dynamics
    Bezhaeva, Z. I.
    Oseledets, V. I.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (04) : 569 - 573
  • [23] SYMBOLIC DYNAMICS AND TOPOLOGICAL-ENTROPY OF HENON MAP
    LIU, LW
    YING, YJ
    CHEN, SG
    HE, XT
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1991, 15 (01) : 1 - 8
  • [24] TWO RESULTS ON ENTROPY, CHAOS AND INDEPENDENCE IN SYMBOLIC DYNAMICS
    Falniowski, Fryderyk
    Kulczycki, Marcin
    Kwietniak, Dominik
    Li, Jian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3487 - 3505
  • [25] Symbolic dynamics and entropy analysis of Feigenbaum limit sets
    Karamanos, K
    Nicolis, G
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1135 - 1150
  • [26] Superconvergence of topological entropy in the symbolic dynamics of substitution sequences
    Zaporski, Leon
    Flicker, Felix
    SCIPOST PHYSICS, 2019, 7 (02):
  • [27] Symbolic dynamics on amenable groups: the entropy of generic shifts
    Frisch, Joshua
    Tamuz, Omer
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1187 - 1210
  • [28] Wavelet Entropy and Complexity Analysis of Cryptocurrencies Dynamics
    Vampa, Victoria
    Martin, Maria T.
    Calderon, Lucila
    Bariviera, Aurelio F.
    DIGITAL ERA AND FUZZY APPLICATIONS IN MANAGEMENT AND ECONOMY, 2022, 384 : 25 - 35
  • [29] Wigner separability entropy and complexity of quantum dynamics
    Benenti, Giuliano
    Carlo, Gabriel G.
    Prosen, Tomaz
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [30] The Hausdorff Dimension of the Support of the Erdös Measure and Symbolic Dynamics
    Z. I. Bezhaeva
    V. I. Oseledets
    Journal of Dynamical and Control Systems, 2013, 19 : 569 - 573