Defeating data hiding in social networks using generative adversarial network

被引:6
|
作者
Wang, Huaqi [1 ]
Qian, Zhenxing [2 ]
Feng, Guorui [1 ]
Zhang, Xinpeng [2 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Inst Intelligent Elect & Syst, Sch Comp Sci, Shanghai, Peoples R China
关键词
Information hiding; Social networks; Steganography; Steganalysis; IMAGE;
D O I
10.1186/s13640-020-00518-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a large number of images are transmitted through social networks every moment, terrorists may hide data into images to convey secret data. Various types of images are mixed up in the social networks, and it is difficult for the servers of social networks to detect whether the images are clean. To prevent the illegal communication, this paper proposes a method of defeating data hiding by removing the secret data without impacting the original media content. The method separates the clean images from illegal images using the generative adversarial network (GAN), in which a deep residual network is used as a generator. Therefore, hidden data can be removed and the quality of the processed images can be well maintained. Experimental results show that the proposed method can prevent secret transmission effectively and preserve the processed images with high quality.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Hierarchical Pressure Data Recovery for Pipeline Network via Generative Adversarial Networks
    Hu, Xuguang
    Zhang, Huaguang
    Ma, Dazhong
    Wang, Rui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 1960 - 1970
  • [42] Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks
    Nik, Alireza Hossein Zadeh
    Riegler, Michael A.
    Halvorsen, Pal
    Storas, Andrea M.
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 434 - 446
  • [43] Data augmentation for handwritten digit recognition using generative adversarial networks
    Jha, Ganesh
    Cecotti, Hubert
    Multimedia Tools and Applications, 2020, 79 (47-48): : 35055 - 35068
  • [44] Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks
    Chen, Yuanyuan
    Lv, Yisheng
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (04) : 1624 - 1630
  • [45] Data augmentation for handwritten digit recognition using generative adversarial networks
    Jha, Ganesh
    Cecotti, Hubert
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (47-48) : 35055 - 35068
  • [46] Smart Meter Data Masking Using Conditional Generative Adversarial Networks
    Khwaja, A. S.
    Anpalagan, A.
    Venkatesh, B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 209
  • [47] Generative Adversarial Networks for Bitcoin Data Augmentation
    Zola, Francesco
    Lukas Bruse, Jan
    Etxeberria Barrio, Xabier
    Galar, Mikel
    Orduna Urrutia, Raul
    2020 2ND CONFERENCE ON BLOCKCHAIN RESEARCH & APPLICATIONS FOR INNOVATIVE NETWORKS AND SERVICES (BRAINS), 2020, : 136 - 143
  • [48] Encrypted Rich-data Steganography using Generative Adversarial Networks
    Shu, Dule
    Cong, Weilin
    Chai, Jiaming
    Tucker, Conrad S.
    PROCEEDINGS OF THE 2ND ACM WORKSHOP ON WIRELESS SECURITY AND MACHINE LEARNING, WISEML 2020, 2020, : 55 - 60
  • [49] Using Generative Adversarial Networks for Data Augmentation in Android Malware Detection
    Chen, Yi-Ming
    Yang, Chun-Hsien
    Chen, Guo-Chung
    2021 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (DSC), 2021,
  • [50] Machine learning data center workloads using generative adversarial networks
    Haverkort B.R.
    Finkbeiner F.
    De Boer P.-T.
    1600, Association for Computing Machinery (48): : 21 - 23