Defeating data hiding in social networks using generative adversarial network

被引:6
|
作者
Wang, Huaqi [1 ]
Qian, Zhenxing [2 ]
Feng, Guorui [1 ]
Zhang, Xinpeng [2 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Inst Intelligent Elect & Syst, Sch Comp Sci, Shanghai, Peoples R China
关键词
Information hiding; Social networks; Steganography; Steganalysis; IMAGE;
D O I
10.1186/s13640-020-00518-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a large number of images are transmitted through social networks every moment, terrorists may hide data into images to convey secret data. Various types of images are mixed up in the social networks, and it is difficult for the servers of social networks to detect whether the images are clean. To prevent the illegal communication, this paper proposes a method of defeating data hiding by removing the secret data without impacting the original media content. The method separates the clean images from illegal images using the generative adversarial network (GAN), in which a deep residual network is used as a generator. Therefore, hidden data can be removed and the quality of the processed images can be well maintained. Experimental results show that the proposed method can prevent secret transmission effectively and preserve the processed images with high quality.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Efficient Approaches for Data Augmentation by Using Generative Adversarial Networks
    Saha, Pretom Kumar
    Logofatu, Doina
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 386 - 399
  • [22] An overview of biological data generation using generative adversarial networks
    Liu, Lin
    Xia, Yujing
    Tang, Lin
    2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 141 - 144
  • [23] Realistic Data Synthesis Using Enhanced Generative Adversarial Networks
    Baowaly, Mrinal Kanti
    Liu, Chao-Lin
    Chen, Kuan-Ta
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 289 - 292
  • [24] Geolocated Data Generation and Protection Using Generative Adversarial Networks
    Alatrista-Salas, Hugo
    Montalvo-Garcia, Peter
    Nunez-del-Prado, Miguel
    Salas, Julián
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13408 LNAI : 80 - 91
  • [25] Synthesizing credit data using autoencoders and generative adversarial networks
    Oreski, Goran
    KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [26] Data Augmentation for Voiceprint Recognition Using Generative Adversarial Networks
    Lin, Yao-San
    Chen, Hung-Yu
    Huang, Mei-Ling
    Hsieh, Tsung-Yu
    ALGORITHMS, 2024, 17 (12)
  • [27] Geolocated Data Generation and Protection Using Generative Adversarial Networks
    Alatrista-Salas, Hugo
    Montalvo-Garcia, Peter
    Nunez-del-Prado, Miguel
    Salas, Julian
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2022, 2022, 13408 : 80 - 91
  • [28] Land Clutter Data Generation Using Generative Adversarial Network
    Dang, Xunwang
    Chen, Yong
    Wang, Chao
    Yin, Hongcheng
    Xu, Honglei
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [29] Poststack Seismic Data Compression Using a Generative Adversarial Network
    Ribeiro, Kevyn Swhants Dos Santos
    Schiavon, Ana Paula
    Navarro, Joao Paulo
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    E Silva, Pedro Mario Cruz
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [30] Synthesis of Glioblastoma Segmentation Data Using Generative Adversarial Network
    Samartha, Mullapudi Venkata Sai
    Maheswar, Gorantla
    Palei, Shantilata
    Jena, Biswajit
    Saxena, Sanjay
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 301 - 312