Defeating data hiding in social networks using generative adversarial network

被引:6
|
作者
Wang, Huaqi [1 ]
Qian, Zhenxing [2 ]
Feng, Guorui [1 ]
Zhang, Xinpeng [2 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Inst Intelligent Elect & Syst, Sch Comp Sci, Shanghai, Peoples R China
关键词
Information hiding; Social networks; Steganography; Steganalysis; IMAGE;
D O I
10.1186/s13640-020-00518-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a large number of images are transmitted through social networks every moment, terrorists may hide data into images to convey secret data. Various types of images are mixed up in the social networks, and it is difficult for the servers of social networks to detect whether the images are clean. To prevent the illegal communication, this paper proposes a method of defeating data hiding by removing the secret data without impacting the original media content. The method separates the clean images from illegal images using the generative adversarial network (GAN), in which a deep residual network is used as a generator. Therefore, hidden data can be removed and the quality of the processed images can be well maintained. Experimental results show that the proposed method can prevent secret transmission effectively and preserve the processed images with high quality.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Poststack Seismic Data Compression Using a Generative Adversarial Network
    dos Santos Ribeiro, Kevyn Swhants
    Schiavon, Ana Paula
    Navarro, Joao Paulo
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    Cruz E Silva, Pedro Mario
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [32] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)
  • [33] Adaptive Traffic Data Augmentation Using Generative Adversarial Networks for Optical Networks
    Li, Shuai
    Li, Jin
    Zhang, Min
    Wang, Danshi
    Song, Chuang
    Zhen, Xinghua
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [34] Social bot detection using variational generative adversarial networks with hidden Markov models in Twitter network
    Lingam, Greeshma
    Das, Sajal K.
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [35] Generative Adversarial Networks in Business and Social Science
    Ruiz-Gandara, Africa
    Gonzalez-Abril, Luis
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [36] Incremental Learning for Network Traffic Classification Using Generative Adversarial Networks
    Ouyang, Guangjin
    Guo, Yong
    Lu, Yu
    He, Fang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2025, E108D (02) : 124 - 136
  • [37] Enhancing network intrusion detection performance using generative adversarial networks
    Zhao, Xinxing
    Fok, Kar Wai
    Thing, Vrizlynn L. L.
    COMPUTERS & SECURITY, 2024, 145
  • [38] Rainfall prediction using generative adversarial networks with convolution neural network
    Venkatesh, R.
    Balasubramanian, C.
    Kaliappan, M.
    SOFT COMPUTING, 2021, 25 (06) : 4725 - 4738
  • [39] Data Augmentation of High Frequency Financial Data Using Generative Adversarial Network
    Naritomi, Yusuke
    Adachi, Takanori
    2020 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2020), 2020, : 641 - 648
  • [40] Range-Constrained Generative Adversarial Network: Design Synthesis Under Constraints Using Conditional Generative Adversarial Networks
    Nobari, Amin Heyrani
    Chen, Wei
    Ahmed, Faez
    JOURNAL OF MECHANICAL DESIGN, 2022, 144 (02)