Semiparametric quantile regression with random censoring

被引:5
|
作者
Bravo, Francesco [1 ]
机构
[1] Univ York, Dept Econ, York YO10 5DD, N Yorkshire, England
关键词
Inverse probability of censoring; Local linear estimation; M-M algorithm; MEDIAN REGRESSION; NONPARAMETRIC-ESTIMATION; SURVIVAL ANALYSIS; MODELS; ESTIMATOR;
D O I
10.1007/s10463-018-0688-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation and inference in semiparametric quantile regression models when the response variable is subject to random censoring. The paper considers both the cases of independent and dependent censoring and proposes three iterative estimators based on inverse probability weighting, where the weights are estimated from the censoring distribution using the Kaplan-Meier, a fully parametric and the conditional Kaplan-Meier estimators. The paper proposes a computationally simple resampling technique that can be used to approximate the finite sample distribution of the parametric estimator. The paper also considers inference for both the parametric and nonparametric components of the quantile regression model. Monte Carlo simulations show that the proposed estimators and test statistics have good finite sample properties. Finally, the paper contains a real data application, which illustrates the usefulness of the proposed methods.
引用
收藏
页码:265 / 295
页数:31
相关论文
共 50 条
  • [41] Quantile regression models for survival data with missing censoring indicators
    Qiu, Zhiping
    Ma, Huijuan
    Chen, Jianwei
    Dinse, Gregg E.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (05) : 1320 - 1331
  • [42] Semiparametric quantile Engel curves and expenditure elasticities: a penalized quantile regression spline approach
    Beatty, Timothy K. M.
    APPLIED ECONOMICS, 2009, 41 (12) : 1533 - 1542
  • [43] Predicting pollution incidents through semiparametric quantile regression models
    Roca-Pardinas, J.
    Ordonez, C.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (03) : 673 - 685
  • [44] Model averaging for semiparametric varying coefficient quantile regression models
    Zhan, Zishu
    Li, Yang
    Yang, Yuhong
    Lin, Cunjie
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (04) : 649 - 681
  • [45] Estimating value at risk with semiparametric support vector quantile regression
    Shim, Jooyong
    Kim, Yongtae
    Lee, Jangtaek
    Hwang, Changha
    COMPUTATIONAL STATISTICS, 2012, 27 (04) : 685 - 700
  • [46] Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
    Li, Rui
    Li, Tao
    Su, Huacheng
    You, Jinhong
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025,
  • [47] Model averaging for semiparametric varying coefficient quantile regression models
    Zishu Zhan
    Yang Li
    Yuhong Yang
    Cunjie Lin
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 649 - 681
  • [48] Nonparametric and Semiparametric Quantile Regression via a New MM Algorithm
    Kai, Bo
    Huang, Mian
    Yao, Weixin
    Dong, Yuexiao
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1613 - 1623
  • [49] Adaptively weighted group Lasso for semiparametric quantile regression models
    Honda, Toshio
    Ing, Ching-Kang
    Wu, Wei-Ying
    BERNOULLI, 2019, 25 (4B) : 3311 - 3338
  • [50] Semiparametric regression for restricted mean residual life under right censoring
    Mansourvar, Zahra
    Martinussen, Torben
    Scheike, Thomas H.
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (12) : 2597 - 2613