Semiparametric quantile regression with random censoring

被引:5
|
作者
Bravo, Francesco [1 ]
机构
[1] Univ York, Dept Econ, York YO10 5DD, N Yorkshire, England
关键词
Inverse probability of censoring; Local linear estimation; M-M algorithm; MEDIAN REGRESSION; NONPARAMETRIC-ESTIMATION; SURVIVAL ANALYSIS; MODELS; ESTIMATOR;
D O I
10.1007/s10463-018-0688-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation and inference in semiparametric quantile regression models when the response variable is subject to random censoring. The paper considers both the cases of independent and dependent censoring and proposes three iterative estimators based on inverse probability weighting, where the weights are estimated from the censoring distribution using the Kaplan-Meier, a fully parametric and the conditional Kaplan-Meier estimators. The paper proposes a computationally simple resampling technique that can be used to approximate the finite sample distribution of the parametric estimator. The paper also considers inference for both the parametric and nonparametric components of the quantile regression model. Monte Carlo simulations show that the proposed estimators and test statistics have good finite sample properties. Finally, the paper contains a real data application, which illustrates the usefulness of the proposed methods.
引用
收藏
页码:265 / 295
页数:31
相关论文
共 50 条
  • [31] Quantile difference estimation with censoring indicators missing at random
    Cui-Juan Kong
    Han-Ying Liang
    Lifetime Data Analysis, 2024, 30 : 345 - 382
  • [32] Semiparametric M-quantile regression for count data
    Dreassi, Emanuela
    Ranalli, M. Giovanna
    Salvati, Nicola
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (06) : 591 - 610
  • [33] Parameter estimation through semiparametric quantile regression imputation
    Chen, Senniang
    Yu, Cindy L.
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3621 - 3647
  • [34] Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification
    Lee, Ying-Ying
    ECONOMETRICS, 2016, 4 (01):
  • [35] Quantile difference estimation with censoring indicators missing at random
    Kong, Cui-Juan
    Liang, Han-Ying
    LIFETIME DATA ANALYSIS, 2024, 30 (02) : 345 - 382
  • [36] CONFIDENCE BANDS FOR THE QUANTILE FUNCTION UNDER RANDOM CENSORING
    EINMAHL, JHJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 36 (01) : 69 - 75
  • [37] Semiparametric regression analysis for composite endpoints subject to componentwise censoring
    Diao, Guoqing
    Zeng, Donglin
    Ke, Chunlei
    Ma, Haijun
    Jiang, Qi
    Ibrahim, Joseph G.
    BIOMETRIKA, 2018, 105 (02) : 403 - 418
  • [38] A semiparametric regression estimator under left truncation and right censoring
    Karlsson, Maria
    Laitila, Thomas
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (16) : 2567 - 2571
  • [39] Quantile regression adjusting for dependent censoring from semicompeting risks
    Li, Ruosha
    Peng, Limin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 107 - 130
  • [40] Deep learning for quantile regression under right censoring: DeepQuantreg
    Jia, Yichen
    Jeong, Jong-Hyeon
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 165