Semiparametric quantile Engel curves and expenditure elasticities: a penalized quantile regression spline approach

被引:2
|
作者
Beatty, Timothy K. M. [1 ]
机构
[1] Univ British Columbia, Canada Res Chair, Food & Resource Econ Grp, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
10.1080/00036840601032185
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article estimates nonparametric Engel curves and expenditure elasticities by quantile for an exhaustive set of household expenditure categories using a novel estimation approach. Engel curves and expenditure elasticities are vital inputs to evaluating the effects of public policies. This article examines whether Engel curves and expenditure elasticities evaluated for an average individual are importantly different from the Engel curves and expenditure elasticities at the upper and lower quantiles.
引用
收藏
页码:1533 / 1542
页数:10
相关论文
共 50 条
  • [1] Asymptotics for penalized spline estimators in quantile regression
    Yoshida, Takuma
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4815 - 4834
  • [2] PENALIZED QUANTILE REGRESSION WITH SEMIPARAMETRIC CORRELATED EFFECTS: AN APPLICATION WITH HETEROGENEOUS PREFERENCES
    Harding, Matthew
    Lamarche, Carlos
    JOURNAL OF APPLIED ECONOMETRICS, 2017, 32 (02) : 342 - 358
  • [3] Advanced algorithms for penalized quantile and composite quantile regression
    Matthew Pietrosanu
    Jueyu Gao
    Linglong Kong
    Bei Jiang
    Di Niu
    Computational Statistics, 2021, 36 : 333 - 346
  • [4] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346
  • [5] Hierarchically penalized quantile regression
    Kang, Jongkyeong
    Bang, Sungwan
    Jhun, Myoungshic
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 340 - 356
  • [6] Penalized quantile regression tree
    Kim, Jaeoh
    Cho, HyungJun
    Bang, Sungwan
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1361 - 1371
  • [7] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03): : 495 - 529
  • [8] Group penalized quantile regression
    Mohamed Ouhourane
    Yi Yang
    Andréa L. Benedet
    Karim Oualkacha
    Statistical Methods & Applications, 2022, 31 : 495 - 529
  • [9] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [10] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438