Penalized quantile regression tree

被引:0
|
作者
Kim, Jaeoh [1 ]
Cho, HyungJun [1 ]
Bang, Sungwan [2 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] Korea Mil Acad, Dept Math, 574 Hwarang Ro, Seoul 01805, South Korea
基金
新加坡国家研究基金会;
关键词
decision tree; penalized regression; quantile regression;
D O I
10.5351/KJAS.2016.29.7.1361
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression provides a variety of useful statistical information to examine how covariates influence the conditional quantile functions of a response variable. However, traditional quantile regression (which assume a linear model) is not appropriate when the relationship between the response and the covariates is a nonlinear. It is also necessary to conduct variable selection for high dimensional data or strongly correlated covariates. In this paper, we propose a penalized quantile regression tree model. The split rule of the proposed method is based on residual analysis, which has a negligible bias to select a split variable and reasonable computational cost. A simulation study and real data analysis are presented to demonstrate the satisfactory performance and usefulness of the proposed method.
引用
收藏
页码:1361 / 1371
页数:11
相关论文
共 50 条
  • [1] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [2] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438
  • [3] Hierarchically penalized quantile regression
    Kang, Jongkyeong
    Bang, Sungwan
    Jhun, Myoungshic
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 340 - 356
  • [4] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03): : 495 - 529
  • [5] Group penalized quantile regression
    Mohamed Ouhourane
    Yi Yang
    Andréa L. Benedet
    Karim Oualkacha
    Statistical Methods & Applications, 2022, 31 : 495 - 529
  • [6] Advanced algorithms for penalized quantile and composite quantile regression
    Matthew Pietrosanu
    Jueyu Gao
    Linglong Kong
    Bei Jiang
    Di Niu
    Computational Statistics, 2021, 36 : 333 - 346
  • [7] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346
  • [8] Hierarchically penalized quantile regression with multiple responses
    Jongkyeong Kang
    Seung Jun Shin
    Jaeshin Park
    Sungwan Bang
    Journal of the Korean Statistical Society, 2018, 47 : 471 - 481
  • [9] Penalized quantile regression for dynamic panel data
    Galvao, Antonio F.
    Montes-Rojas, Gabriel V.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3476 - 3497
  • [10] ADMM for Penalized Quantile Regression in Big Data
    Yu, Liqun
    Lin, Nan
    INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (03) : 494 - 518