Semiparametric quantile Engel curves and expenditure elasticities: a penalized quantile regression spline approach

被引:2
|
作者
Beatty, Timothy K. M. [1 ]
机构
[1] Univ British Columbia, Canada Res Chair, Food & Resource Econ Grp, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
10.1080/00036840601032185
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article estimates nonparametric Engel curves and expenditure elasticities by quantile for an exhaustive set of household expenditure categories using a novel estimation approach. Engel curves and expenditure elasticities are vital inputs to evaluating the effects of public policies. This article examines whether Engel curves and expenditure elasticities evaluated for an average individual are importantly different from the Engel curves and expenditure elasticities at the upper and lower quantiles.
引用
收藏
页码:1533 / 1542
页数:10
相关论文
共 50 条
  • [21] ADMM for Penalized Quantile Regression in Big Data
    Yu, Liqun
    Lin, Nan
    INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (03) : 494 - 518
  • [22] Hierarchically penalized quantile regression with multiple responses
    Kang, Jongkyeong
    Shin, Seung Jun
    Park, Jaeshin
    Bang, Sungwan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (04) : 471 - 481
  • [23] Elastic net penalized quantile regression model
    Su, Meihong
    Wang, Wenjian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
  • [24] Smoothness Selection for Penalized Quantile Regression Splines
    Reiss, Philip T.
    Huang, Lei
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [25] Semiparametric quantile regression using family of quantile-based asymmetric densities
    Gijbels, Irene
    Karim, Rezaul
    Verhasselt, Anneleen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157
  • [26] A penalized approach to covariate selection through quantile regression coefficient models
    Sottile, Gianluca
    Frumento, Paolo
    Chiodi, Marcello
    Bottai, Matteo
    STATISTICAL MODELLING, 2020, 20 (04) : 369 - 385
  • [27] Quantile Regression on Quantile Ranges - A Threshold Approach
    Kuan, Chung-Ming
    Michalopoulos, Christos
    Xiao, Zhijie
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (01) : 99 - 119
  • [28] Adaptive semiparametric M-quantile regression
    Otto-Sobotka, Fabian
    Salvati, Nicola
    Ranalli, Maria Giovanna
    Kneib, Thomas
    ECONOMETRICS AND STATISTICS, 2019, 11 : 116 - 129
  • [29] Quantile regression in functional linear semiparametric model
    Tang Qingguo
    Kong, Linglong
    STATISTICS, 2017, 51 (06) : 1342 - 1358
  • [30] Special issue on quantile regression and semiparametric methods
    He, Xuming
    Kneib, Thomas
    Lamarche, Carlos
    Wang, Lan
    ECONOMETRICS AND STATISTICS, 2018, 8 : 1 - 2