A Learnable Model With Calibrated Uncertainty Quantification for Estimating Canopy Height From Spaceborne Sequential Imagery

被引:9
|
作者
Alagialoglou, Leonidas [1 ]
Manakos, Ioannis [2 ]
Heurich, Marco [3 ,4 ,5 ]
Cervenka, Jaroslav [6 ]
Delopoulos, Anastasios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Multimedia Understanding Grp, Thessaloniki 54124, Greece
[2] Ctr Res & Technol Hellas CERTH, Informat Technol Inst, Thessaloniki 57001, Greece
[3] Bavarian Forest Natl Pk, Dept Visitor Management & Natl Pk Monitoring, D-94481 Grafenau, Germany
[4] Univ Freiburg, Chair Wildlife Ecol & Management, Fac Environm & Nat Resources, D-79106 Freiburg, Germany
[5] Inland Norway Univ Appl Sci, Inst Forest & Wildlife Management, Campus Evenstad, N-2480 Koppang, Norway
[6] Sumava Natl Pk, Kasperske Hory 34192, Czech Republic
关键词
Calibration; canopy height estimation; multitemporal regression; recurrent neural network (RNN); Sentinel-2; uncertainty estimation; FOREST; LIDAR;
D O I
10.1109/TGRS.2022.3171407
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Global-scale canopy height mapping is an important tool for ecosystem monitoring and sustainable forest management. Various studies have demonstrated the ability to estimate canopy height from a single spaceborne multispectral image using end-to-end learning techniques. In addition to texture information of a single-shot image, our study exploits multitemporal information of image sequences to improve estimation accuracy. We adopt a convolutional variant of a long shortterm memory (LSTM) model for canopy height estimation from multitemporal instances of Sentinel-2 products. Furthermore, we utilize the deep ensembles technique for meaningful uncertainty estimation on the predictions and postprocessing isotonic regression model for calibrating them. Our lightweight model (similar to 320k trainable parameters) achieves the mean absolute error (MAE) of 1.29 m in a European test area of 79 km(2). It outperforms the state-of-the-art methods based on single-shot spaceborne images as well as costly airborne images while providing additional confidence maps that are shown to he well calibrated. Moreover, the trained model is shown to be transferable in a different country of Europe using a fine-tuning area of as low as similar to 2 km(2) with MAE = 1.94 m.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Generating Wall-to-Wall Canopy Height Information from Discrete Data Provided by Spaceborne LiDAR System
    Doyog, Nova D.
    Lin, Chinsu
    FORESTS, 2024, 15 (03):
  • [42] Individual tree detection and counting based on high-resolution imagery and the canopy height model data
    Zhang, Ye
    Wang, Moyang
    Mango, Joseph
    Xin, Liang
    Meng, Chen
    Li, Xiang
    GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (06) : 2162 - 2178
  • [43] An Investigation of Winter Wheat Leaf Area Index Fitting Model Using Spectral and Canopy Height Model Data from Unmanned Aerial Vehicle Imagery
    Zhang, Xuewei
    Zhang, Kefei
    Wu, Suqin
    Shi, Hongtao
    Sun, Yaqin
    Zhao, Yindi
    Fu, Erjiang
    Chen, Shuo
    Bian, Chaofa
    Ban, Wei
    REMOTE SENSING, 2022, 14 (20)
  • [44] Associatively Segmenting Semantics and Estimating Height From Monocular Remote-Sensing Imagery
    Liu, Wenjie
    Sun, Xian
    Zhang, Wenkai
    Guo, Zhi
    Fu, Kun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [45] Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle
    Li, Jinwen
    Zhang, Feng
    Qian, Xiaoyong
    Zhu, Yuanhong
    Shen, Genxiang
    REMOTE SENSING LETTERS, 2015, 6 (03) : 183 - 189
  • [46] Moving Voxel Method for Estimating Canopy Base Height from Airborne Laser Scanner Data
    Maguya, Almasi S.
    Tegel, Katri
    Junttila, Virpi
    Kauranne, Tuomo
    Korhonen, Markus
    Burns, Janice
    Leppanen, Vesa
    Sanz, Blanca
    REMOTE SENSING, 2015, 7 (07) : 8950 - 8972
  • [47] Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles
    Lang, Nico
    Kalischek, Nikolai
    Armston, John
    Schindler, Konrad
    Dubayah, Ralph
    Wegner, Jan Dirk
    REMOTE SENSING OF ENVIRONMENT, 2022, 268
  • [48] Estimating canopy height change using machine learning by coupling WorldView-2 stereo imagery with Landsat-7 data
    Wang, Jian
    Liu, Desheng
    Quiring, Steven M. M.
    Qin, Rongjun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (02) : 631 - 645
  • [49] Uncertainty quantification of structural dynamic characteristics based on sequential design and Gaussian process model
    Wan H.
    Zhang Z.
    Zhou J.
    Ren W.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (03): : 529 - 536
  • [50] Two sources of uncertainty in estimating tephra volumes from isopachs: perspectives and quantification
    Yang, Qingyuan
    Jenkins, Susanna F. F.
    BULLETIN OF VOLCANOLOGY, 2023, 85 (08)