A Learnable Model With Calibrated Uncertainty Quantification for Estimating Canopy Height From Spaceborne Sequential Imagery

被引:9
|
作者
Alagialoglou, Leonidas [1 ]
Manakos, Ioannis [2 ]
Heurich, Marco [3 ,4 ,5 ]
Cervenka, Jaroslav [6 ]
Delopoulos, Anastasios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Multimedia Understanding Grp, Thessaloniki 54124, Greece
[2] Ctr Res & Technol Hellas CERTH, Informat Technol Inst, Thessaloniki 57001, Greece
[3] Bavarian Forest Natl Pk, Dept Visitor Management & Natl Pk Monitoring, D-94481 Grafenau, Germany
[4] Univ Freiburg, Chair Wildlife Ecol & Management, Fac Environm & Nat Resources, D-79106 Freiburg, Germany
[5] Inland Norway Univ Appl Sci, Inst Forest & Wildlife Management, Campus Evenstad, N-2480 Koppang, Norway
[6] Sumava Natl Pk, Kasperske Hory 34192, Czech Republic
关键词
Calibration; canopy height estimation; multitemporal regression; recurrent neural network (RNN); Sentinel-2; uncertainty estimation; FOREST; LIDAR;
D O I
10.1109/TGRS.2022.3171407
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Global-scale canopy height mapping is an important tool for ecosystem monitoring and sustainable forest management. Various studies have demonstrated the ability to estimate canopy height from a single spaceborne multispectral image using end-to-end learning techniques. In addition to texture information of a single-shot image, our study exploits multitemporal information of image sequences to improve estimation accuracy. We adopt a convolutional variant of a long shortterm memory (LSTM) model for canopy height estimation from multitemporal instances of Sentinel-2 products. Furthermore, we utilize the deep ensembles technique for meaningful uncertainty estimation on the predictions and postprocessing isotonic regression model for calibrating them. Our lightweight model (similar to 320k trainable parameters) achieves the mean absolute error (MAE) of 1.29 m in a European test area of 79 km(2). It outperforms the state-of-the-art methods based on single-shot spaceborne images as well as costly airborne images while providing additional confidence maps that are shown to he well calibrated. Moreover, the trained model is shown to be transferable in a different country of Europe using a fine-tuning area of as low as similar to 2 km(2) with MAE = 1.94 m.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] MSIS-UQ: Calibrated and Enhanced NRLMSIS 2.0 Model With Uncertainty Quantification
    Licata, Richard J.
    Mehta, Piyush M.
    Weimer, Daniel R.
    Tobiska, W. Kent
    Yoshii, Jean
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2022, 20 (11):
  • [22] Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland
    Wang, Mengjia
    Sun, Rui
    Xiao, Zhiqiang
    REMOTE SENSING, 2018, 10 (02)
  • [23] A sequential calibration and validation framework for model uncertainty quantification and reduction
    Jiang, Chen
    Hu, Zhen
    Liu, Yixuan
    Mourelatos, Zissimos P.
    Gorsich, David
    Jayakumar, Paramsothy
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368
  • [24] Estimating Forest Canopy Height With Multi-Spectral and Multi-Temporal Imagery Using Deep Learning
    Oehmcke, Stefan
    Nyegaard-Signori, Thomas
    Grogan, Kenneth
    Gieseke, Fabian
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4915 - 4924
  • [25] Estimating forest canopy height and terrain relief from GLAS waveform metrics
    Duncanson, L. I.
    Niemann, K. O.
    Wulder, M. A.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (01) : 138 - 154
  • [26] Comparison of vegetation canopy height model for estimating biomass in a mangrove forest in the Colombian Caribbean
    Fuentes Delgado, Jose Eduardo
    ENTORNO GEOGRAFICO, 2020, (19): : 1 - 18
  • [27] Retrieval of Savanna Vegetation Canopy Height from ICESat-GLAS Spaceborne LiDAR With Terrain Correction
    Khalefa, Ehsan
    Smit, Izak P. J.
    Nickless, Alecia
    Archibald, Sally
    Comber, Alexis
    Balzter, Heiko
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (06) : 1439 - 1443
  • [28] AIRBORNE X-HH INCIDENCE ANGLE IMPACT ON CANOPY HEIGHT RETREIVAL: IMPLICATIONS FOR SPACEBORNE X-HH TANDEM-X GLOBAL CANOPY HEIGHT MODEL
    Tighe, M. Lorraine
    King, Doug
    Balzter, Heiko
    Bannari, Abderrazak
    McNairn, Heather
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 91 - 96
  • [29] Estimating Forest Attributes Using Observations of Canopy Height: A Model-Based Approach
    Mehtatalo, Lauri
    Nyblom, Jukka
    FOREST SCIENCE, 2009, 55 (05) : 411 - 422
  • [30] QUANTIFICATION OF MODEL UNCERTAINTY FROM DATA
    DEVRIES, DK
    VANDENHOF, PMJ
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (02) : 301 - 319