A Learnable Model With Calibrated Uncertainty Quantification for Estimating Canopy Height From Spaceborne Sequential Imagery

被引:9
|
作者
Alagialoglou, Leonidas [1 ]
Manakos, Ioannis [2 ]
Heurich, Marco [3 ,4 ,5 ]
Cervenka, Jaroslav [6 ]
Delopoulos, Anastasios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Multimedia Understanding Grp, Thessaloniki 54124, Greece
[2] Ctr Res & Technol Hellas CERTH, Informat Technol Inst, Thessaloniki 57001, Greece
[3] Bavarian Forest Natl Pk, Dept Visitor Management & Natl Pk Monitoring, D-94481 Grafenau, Germany
[4] Univ Freiburg, Chair Wildlife Ecol & Management, Fac Environm & Nat Resources, D-79106 Freiburg, Germany
[5] Inland Norway Univ Appl Sci, Inst Forest & Wildlife Management, Campus Evenstad, N-2480 Koppang, Norway
[6] Sumava Natl Pk, Kasperske Hory 34192, Czech Republic
关键词
Calibration; canopy height estimation; multitemporal regression; recurrent neural network (RNN); Sentinel-2; uncertainty estimation; FOREST; LIDAR;
D O I
10.1109/TGRS.2022.3171407
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Global-scale canopy height mapping is an important tool for ecosystem monitoring and sustainable forest management. Various studies have demonstrated the ability to estimate canopy height from a single spaceborne multispectral image using end-to-end learning techniques. In addition to texture information of a single-shot image, our study exploits multitemporal information of image sequences to improve estimation accuracy. We adopt a convolutional variant of a long shortterm memory (LSTM) model for canopy height estimation from multitemporal instances of Sentinel-2 products. Furthermore, we utilize the deep ensembles technique for meaningful uncertainty estimation on the predictions and postprocessing isotonic regression model for calibrating them. Our lightweight model (similar to 320k trainable parameters) achieves the mean absolute error (MAE) of 1.29 m in a European test area of 79 km(2). It outperforms the state-of-the-art methods based on single-shot spaceborne images as well as costly airborne images while providing additional confidence maps that are shown to he well calibrated. Moreover, the trained model is shown to be transferable in a different country of Europe using a fine-tuning area of as low as similar to 2 km(2) with MAE = 1.94 m.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Research progress on retrieving forest canopy height and sub-canopy topography from spaceborne photon-counting LiDAR data
    Li Y.
    Zhu J.
    Fu H.
    Gao S.
    Wu K.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2023, 54 (11): : 4380 - 4390
  • [32] ESTIMATING TREE CANOPY HEIGHT IN DENSELY FOREST-COVERED MOUNTAINOUS AREAS USING GEDI SPACEBORNE FULL-WAVEFORM DATA
    Liu, Chun
    Wang, Shufan
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION I, 2022, 5-1 : 25 - 32
  • [33] A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery
    Sawada, Yoshito
    Suwa, Rempei
    Jindo, Keiji
    Endo, Takahiro
    Oki, Kazuo
    Sawada, Haruo
    Arai, Egidio
    Shimabukuro, Yosio Edemir
    Souza Celes, Carlos Henrique
    Assis Campos, Moacir Alberto
    Higuchi, Francisco Gasparetto
    Nogueira Lima, Adriano Jose
    Higuchi, Niro
    Kajimoto, Takuya
    Ishizuka, Moriyoshi
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 43 : 92 - 101
  • [34] Estimating vegetation height and canopy cover from remotely sensed data with machine learning
    Stojanova, Daniela
    Panov, Pance
    Gjorgjioski, Valentin
    Kohler, Andrej
    Dzeroski, Saso
    ECOLOGICAL INFORMATICS, 2010, 5 (04) : 256 - 266
  • [35] Estimating canopy and stand structure in hybrid poplar plantations from multispectral UAV imagery
    Romano, Elio
    Brambilla, Massimo
    Chianucci, Francesco
    Tattoni, Clara
    Puletti, Nicola
    Chirici, Gherardo
    Travaglini, Davide
    Giannetti, Francesca
    ANNALS OF FOREST RESEARCH, 2024, 67 (01) : 143 - 154
  • [36] Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar
    Pang, Yong
    Lefsky, Michael
    Sun, Guoqing
    Ranson, Jon
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (11) : 2798 - 2809
  • [37] An efficient method for estimating tropical forest canopy height from airborne PolInSAR data
    Luo, Hongbin
    Yue, Cairong
    Wu, Yong
    Zhang, Xiaoli
    Lu, Chi
    Ou, Guanglong
    ECOLOGICAL INDICATORS, 2024, 166
  • [38] Deep-learning-based canopy height model generation from sub-meter resolution panchromatic satellite imagery
    Abolt, Charles J.
    Santos, Javier
    Atchley, Adam L.
    Wells, Lucas
    Martin, Daithi
    Parsons, Russell A.
    Linn, Rodman R.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):
  • [39] Inversion of a canopy reflectance model using hyperspectral imagery for monitoring wheat growth and estimating yield
    Silke Migdall
    Heike Bach
    Jans Bobert
    Marc Wehrhan
    Wolfram Mauser
    Precision Agriculture, 2009, 10 : 508 - 524
  • [40] Inversion of a canopy reflectance model using hyperspectral imagery for monitoring wheat growth and estimating yield
    Migdall, Silke
    Bach, Heike
    Bobert, Jans
    Wehrhan, Marc
    Mauser, Wolfram
    PRECISION AGRICULTURE, 2009, 10 (06) : 508 - 524